The performance of a novel impinging two-phase jet heat sink operating with single and multiple jets is presented and the influence of the following parameters is quantified: (i) thermal load applied on the heat sink and (ii) geometrical arrangement of the orifices (jets). The heat sink is part of a vapor compression cooling system equipped with an R-134a small-scale oil-free linear motor compressor. The evaporator and the expansion device are integrated into a single cooling unit. The expansion device can be a single orifice or an array of orifices responsible for the generation of two-phase jet(s) impinging on a surface where a concentrated heat load is applied. The analysis is based on the thermodynamic performance and steady-state heat transfer parameters associated with the impinging jet(s) for single and multiple orifice tests. The two-phase jet heat sink was capable of dissipating cooling loads of up to 160 W and 200 W from a 6.36 cm2 surface for single and multiple orifice configurations, respectively. For these cases, the temperature of the impingement surface was kept below 40 °C and the average heat transfer coefficient reached values between 14,000 and 16,000 W/(m2 K).

References

References
1.
Smakulski
,
P.
, and
Pietrowicz
,
S.
,
2016
, “
A Review of the Capabilities of High Heat Flux Removal by Porous Materials, Microchannels and Spray Cooling Techniques
,”
Appl. Therm. Eng.
,
104
, pp.
636
646
.
2.
Bar-Cohen
,
A.
, and
Holloway
,
C. A.
,
2014
, “
Thermal Science and Engineering—From Macro to Nano in 200 Years
,”
15th International Heat Transfer Conference
(
IHTC-15
), Kyoto, Japan, Aug. 10–15, Paper No. IHTC15-FL01.
3.
Nakayama
,
W.
,
Suzuki
,
O.
, and
Hara
,
Y.
,
2009
, “
Thermal Management of Electronic and Electrical Devices in Automobile Environment
,”
Fifth International IEEE Vehicle Power and Propulsion Conference
(
VPPC
), Dearborn, MI, Sept. 7–10, pp.
601
608
.
4.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
5.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.
6.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2016
, “
Cooling of Server Electronics: A Design Review of Existing Technology
,”
Appl. Therm. Eng.
,
105
, pp.
622
638
.
7.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
,
2006
, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.
8.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2008
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Orlando, FL, May 28–31, pp.
1210
1221
.
9.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
10.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
11.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
(
11
), p.
110801
.
12.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
Lamaison
,
N.
, and
Thome
,
J. R.
,
2013
, “
Advances in Electronics Cooling
,”
Heat Transfer Eng.
,
34
(
5–6
), pp.
434
446
.
13.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.
14.
Cheng
,
W.-L.
,
Zhang
,
W.-W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
614
628
.
15.
Riofrío
,
M. C.
,
Caney
,
N.
, and
Gruss
,
J.-A.
,
2016
, “
State of the Art of Efficient Pumped Two-Phase Flow Cooling Technologies
,”
Appl. Therm. Eng.
,
104
, pp.
333
343
.
16.
Barbosa
,
J. R.
, Jr.
,
Ribeiro
,
G. B.
, and
Oliveira
,
P. A.
,
2012
, “
A State-of-the-Art Review of Compact Vapor Compression Refrigeration Systems and Their Applications
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
356
374
.
17.
Trutassanawin
,
S.
,
Groll
,
E.
,
Garimella
,
S. V.
, and
Cremaschi
,
L.
,
2006
, “
Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
3
), pp.
678
687
.
18.
Marcinichen
,
J. B.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2010
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,”
Int. J. Refrig.
,
33
(
7
), pp.
1264
1276
.
19.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
de Oliveira
,
V.
, and
Thome
,
J. R.
,
2012
, “
A Review of On-Chip Micro-Evaporation: Experimental Evaluation of Liquid Pumping and Vapor Compression Driven Cooling Systems and Control
,”
Appl. Energy
,
92
, pp.
147
161
.
20.
Mancin
,
S.
,
Zilio
,
C.
,
Righetti
,
G.
, and
Rossetto
,
L.
,
2013
, “
Mini Vapor Cycle System for High Density Electronic Cooling Applications
,”
Int. J. Refrig.
,
36
(
4
), pp.
1191
1202
.
21.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
106
115
.
22.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.
23.
Lienhard
,
V. J. H.
,
1995
, “
Liquid Jet Impingement
,”
Annual Review of Heat Transfer
, Vol.
6
, Begell House, New York, pp.
199
270
.
24.
Pan
,
Y.
, and
Webb
,
B. W.
,
1995
, “
Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
878
883
.
25.
Whelan
,
B. P.
, and
Robinson
,
A. J.
,
2009
, “
Nozzle Geometry Effects in Liquid Jet Array Impingement
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2211
2221
.
26.
Lindeman
,
B. A.
, and
Shedd
,
T. A.
,
2013
, “
Comparison of Empirical Correlations and a Two-Equation Predictive Model for Heat Transfer to Arbitrary Arrays of Single-Phase Impinging Jets
,”
Int. J. Heat Mass Transfer
,
66
, pp.
772
780
.
27.
San
,
J.-Y.
, and
Chen
,
J.-J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.
28.
Qiu
,
L.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2015
, “
Recent Developments of Jet Impingement Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
89
, pp.
42
58
.
29.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
,
2005
, “
A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
38
48
.
30.
Meyer
,
M. T.
,
Mudawar
,
I.
,
Boyack
,
C. E.
, and
Hale
,
C. A.
,
2006
, “
Single-Phase and Two-Phase Cooling With an Array of Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
17
29
.
31.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Microjet Array Single-Phase and Flow Boiling Heat Transfer With R-134a
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5027
5034
.
32.
Wang
,
Z. Y.
,
Wong
,
T. N.
, and
Duan
,
F.
,
2011
, “
Submerged Liquid Jet Impingement Cooling
,”
13th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 7–9, pp.
660
666
.
33.
Whelan
,
B. P.
,
Kempers
,
R.
, and
Robinson
,
A. J.
,
2012
, “
A Liquid-Based System for CPU Cooling Implementing a Jet Array Impingement Waterblock and a Tube Array Remote Heat Exchanger
,”
Appl. Therm. Eng.
,
39
, pp.
86
94
.
34.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K.
,
2012
, “
Impingement-Based High Performance Cooling Configurations for Automotive Power Converters
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
834
847
.
35.
Buchanan
,
R. A.
, and
Shedd
,
T. A.
,
2013
, “
Extensive Parametric Study of Heat Transfer to Arrays of Oblique Impinging Jets With Phase Change
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111017
.
36.
Joshi
,
S. N.
,
Rau
,
M. J.
,
Dede
,
E. M.
, and
Garimella
,
S. V.
,
2013
, “
An Experimental Study of a Multi-Device Jet Impingement Cooler With Phase Change Using HFE-7100
,”
ASME
Paper No. HT2013-17059.
37.
Joshi
,
S. N.
,
Rau
,
M. J.
, and
Dede
,
E. M.
,
2013
, “
An Experimental Study of a Single-Device Jet Impingement Cooler With Phase Change Using HFE-7100 and a Vapor Extraction Manifold
,”
ASME
Paper No. IMECE2013-63249.
38.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
.
39.
Maddox
,
J. F.
,
Knight
,
R. W.
, and
Bhavnani
,
S. H.
,
2015
, “
Local Thermal Measurements of a Confined Array of Impinging Liquid Jets for Power Electronics Cooling
,”
31st Semiconductor Thermal Measurement, Modeling and Management Symposium
, (
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
228
234
.
40.
Gould
,
K.
,
Cai
,
S. Q.
,
Neft
,
C.
, and
Bhunia
,
A.
,
2015
, “
Liquid Jet Impingement Cooling of a Silicon Carbide Power Conversion Module for Vehicle Applications
,”
IEEE Trans. Power Electron.
,
30
(
6
), pp.
2975
2984
.
41.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2009
, “
CHF Determination for High-Heat Flux Phase Change Cooling System Incorporating Both Micro-Channel Flow and Jet Impingement
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
610
619
.
42.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase and Two-Phase Cooling Using Hybrid Micro-Channel/Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3825
3839
.
43.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase and Two-Phase Heat Transfer Characteristics of Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling Module
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3882
3895
.
44.
Barrau
,
J.
,
Chemisana
,
D.
,
Rosell
,
J.
,
Tadrist
,
L.
, and
Ibañez
,
M.
,
2010
, “
An Experimental Study of a New Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2058
2066
.
45.
Chien
,
L.-H.
,
Liao
,
W.-R.
, and
Liu
,
H.-Y.
,
2014
, “
An Experimental Study of Two-Phase Convection in Micro-Channels With Impinging FC-72 Jets
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
159
167
.
46.
Muszynski
,
T.
, and
Andrzejczyk
,
R.
,
2016
, “
Heat Transfer Characteristics of Hybrid Microjet-Microchannel Cooling Module
,”
Appl. Therm. Eng.
,
93
, pp.
1360
1366
.
47.
Yan
,
Z. B.
,
Toh
,
K. C.
,
Duan
,
F.
,
Wong
,
T. N.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
,
2010
, “
Experimental Study of Impingement Spray Cooling for High Power Devices
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1225
1230
.
48.
Chunqiang
,
S.
,
Shuangquan
,
S.
,
Changqing
,
T.
, and
Hongbo
,
X.
,
2012
, “
Development and Experimental Investigation of a Novel Spray Cooling System Integrated in Refrigeration Circuit
,”
Appl. Therm. Eng.
,
33–34
, pp.
246
252
.
49.
Tan
,
Y. B.
,
Xie
,
J. L.
,
Duan
,
F.
,
Wong
,
T. N.
,
Toh
,
K. C.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
,
2013
, “
Multi-Nozzle Spray Cooling for High Heat Flux Applications in a Closed Loop System
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
372
379
.
50.
Xie
,
J. L.
,
Tan
,
Y. B.
,
Wong
,
T. N.
,
Duan
,
F.
,
Toh
,
K. C.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
,
2014
, “
Multi-Nozzle Array Spray Cooling for Large Area High Power Devices in a Closed Loop System
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1177
1186
.
51.
Xu
,
H.
,
Si
,
C.
,
Shao
,
S.
, and
Tian
,
C.
,
2014
, “
Experimental Investigation on Heat Transfer of Spray Cooling With Isobutane (R-600a)
,”
Int. J. Therm. Sci.
,
86
, pp.
21
27
.
52.
Hou
,
Y.
,
Liu
,
J.
,
Su
,
X.
,
Qian
,
Y.
,
Liu
,
L.
, and
Liu
,
X.
,
2015
, “
Experimental Study on the Characteristics of a Closed Loop R-134a Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
194
200
.
53.
Chen
,
S.
,
Liu
,
J.
,
Liu
,
X.
, and
Hou
,
Y.
,
2015
, “
An Experimental Comparison of Heat Transfer Characteristic Between R-134a and R-22 in Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
206
212
.
54.
Oliveira
,
P. A.
,
2016
, “
Development of a Two-Phase Jet Heat Sink Integrated With a Compact Refrigeration System for Electronics Cooling
,”
Ph.D. thesis
, Federal University of Santa Catarina, Florianópolis, Brazil.http://www.polo.ufsc.br/fmanager/polo2016/publicacoes/arquivo293_1.pdf
55.
Oliveira
,
P. A.
, and
Barbosa
,
J. R.
, Jr.
,
2017
, “
Novel Two-Phase Jet Impingement Heat Sink for Active Cooling of Electronic Devices
,”
Appl. Therm. Eng.
,
112
, pp.
952
964
.
56.
Oliveira
,
P. A.
, and
Barbosa
,
J. R.
, Jr.
,
2016
, “
Two-Phase Jet Impingement Heat Sink Integrated With a Compact Vapor Compression System for Electronics Cooling
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Las Vegas, NV, May 31–June 3, pp. 976–986.
57.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M.
,
2007
, “
NIST Reference Fluid Thermodynamic and Transport Properties (REFPROP): Version 8.0
,” National Institute of Standards and Technology (NIST), Boulder, CO.
58.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
59.
Hsieh
,
S.-S.
,
Fan
,
T.-C.
, and
Tsai
,
H.-H.
,
2004
, “
Spray Cooling Characteristics of Water and R-134a—Part I: Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5703
5712
.
You do not currently have access to this content.