Portable electronic devices are commonly exposed to shock and impact loading due to accidental drops. After external impact, internal collisions (termed “secondary impacts” in this study) between vibrating adjacent subassemblies of a product may occur if design guidelines fail to prevent such events. Secondary impacts can result in short acceleration pulses with much higher amplitudes and higher frequencies than those in conventional board-level drop tests. Thus, such pulses are likely to excite the high-frequency resonances of printed wiring boards (PWBs) (including through-thickness “breathing” modes) and also of miniature structures in assembled surface mount technology (SMT) components. Such resonant effects have a strong potential to damage the component, and therefore should be avoided. When the resonant frequency of a miniature structure (e.g., elements of an SMT microelectromechanical system (MEMS) component) in an SMT assembly is close to a natural frequency of the PWB, an amplified response is expected in the miniature structure. Components which are regarded as reliable under conventional qualification test methods may still pose a failure risk when secondary impact is considered. This paper is the second part of a two-part series exploring the effect of secondary impacts in a printed wiring assembly (PWA). The first paper is this series focused on the breathing mode of vibration generated in a PWB under secondary impact, and this paper focuses on analyzing the effect of such breathing modes on typical failure modes with different resonant frequencies in SMT applications. The results demonstrate distinctly different sensitivity of each failure mode to the impacts.

References

References
1.
Mattila
,
T.
,
Vajavaara
,
L.
,
Hokka
,
J.
,
Hussa
,
E.
,
Makela
,
M.
, and
Halkola
,
V.
,
2013
, “
An Approach to Board-Level Drop Reliability Evaluation With Improved Correlation With Use Conditions
,”
63rd IEEE Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
1259
1268
.
2.
Goyal
,
S.
,
Upasani
,
S.
, and
Patel
,
D. M.
,
1999
, “
Improving Impact Tolerance of Portable Electronic Products: Case Study of Cellular Phones
,”
Exp. Mech.
,
39
(
1
), pp.
43
52
.
3.
Lim
,
C. T.
,
Ang
,
C. W.
,
Tan
,
L. B.
,
Seah
,
S. K. W.
, and
Wong
,
E. H.
,
2003
, “
Drop Impact Survey of Portable Electronic Products
,”
53rd IEEE Electronic Components and Technology Conference
(
ECTC
), New Orleans, LA, May 27–30, pp.
113
120
.
4.
Douglas
,
S. T.
,
Al-Bassyiouni
,
M.
, and
Dasgupta
,
A.
,
2014
Experiment and Simulation of Board Level Drop Tests With Intentional Board Slap at High Impact Accelerations
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
4
), pp.
569
580
.
5.
JEDEC
,
2003
, “
Board Level Drop Test Method of Components for Handheld Electronic Products
,” JEDEC Solid State Technology Association, Arlington, VA, Standard No.
JESD22-B111
.
6.
Lim
,
C. T.
, and
Low
,
Y. J.
,
2002
, “
Investigating the Drop Impact of Portable Electronic Products
,”
52nd IEEE Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 28–31, pp. 1270–1274.
7.
Ong
,
Y. C.
,
Shim
,
V. P. W.
,
Chai
,
T. C.
, and
Lim
,
C. T.
,
2003
, “
Comparison of Mechanical Response of PCBs Subjected to Product-Level and Board-Level Drop Impact Tests
,”
5th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 10–12, pp.
223
227
.
8.
Karppinen
,
J.
,
Li
,
J.
,
Pakarinen
,
J.
,
Mattila
,
T. T.
, and
Paulasto-Kröckel
,
M.
,
2012
, “
Shock Impact Reliability Characterization of a Handheld Product in Accelerated Tests and Use Environment
,”
Microelectron. Reliab.
,
52
(
1
), pp.
190
198
.
9.
Meng
,
J.
, Stark, P., Dasgupta, A., Sillanpaa, M., Hussa, E., Seppanen, J., Raunio, J., and Saarinen, I.,
2013
, “
Effect of Strain Rate on Adhesion Strength of Anisotropic Conductive Film (ACF) Joints
,”
63rd IEEE Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
1252
1258
.
10.
Tanner
,
D. M.
, Walraven, J. A., Helgesen, K., Irwin, L. W., Brown, F., Smith, N. F., and Masters, N.,
2000
, “
MEMS Reliability in Shock Environments
,”
38th IEEE Annual International Reliability Physics Symposium
(
IRPS
), San Jose, CA, Apr. 10–13, pp.
129
138
.
11.
Lall
,
P.
,
Kothari
,
N.
, and
Glover
,
J.
,
2015
, “
Mechanical Shock Reliability Analysis and Multiphysics Modeling of MEMS Accelerometers in Harsh Environments
,”
ASME
Paper No. IPACK2015-48457.
12.
Lall
,
P.
,
Abrol
,
A.
,
Simpson
,
L.
, and
Glover
,
J.
,
2015
, “
Survivability of MEMS Accelerometer Under Sequential Thermal and High-G Mechanical Shock Environments
,”
ASME
Paper No. IPACK2015-48790.
13.
Lall
,
P.
,
Abrol
,
A. S.
,
Simpson
,
L.
, and
Glover
,
J.
,
2016
, “
A Study on Damage Progression in MEMS Based Silicon Oscillators Subjected to High-G Harsh Environments
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
546
559
.
14.
Togami
,
T. C.
,
Baker
,
W. E.
, and
Forrestal
,
M. J.
,
1996
, “
A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
353
356
.
15.
Pandey
,
M.
, Aubin, K., Zalalutdinov, M., Reichenbach, R. B., Zehnder, A. T., Rand, R. H., and Craighead, H. G.,
2006
, “
Analysis of Frequency Locking in Optically Driven MEMS Resonators
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1546
1554
.
16.
Zhou
,
Z. J.
,
Rufer
,
L.
,
Salze
,
E.
,
Ollivier
,
S.
, and
Wong
,
M.
,
2013
, “
Wide-Band Aero-Acoustic Microphone With Improved Low-Frequency Characteristics
,”
17th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS & EUROSENSORS XXVII
), Barcelona, Spain, June 16–20, pp.
1835
1838
.
17.
Sheehy
,
M.
,
Reid
,
M.
,
Punch
,
J.
,
Goyal
,
S.
, and
Kelly
,
G.
,
2008
, “
The Failure Mechanisms of Micro-Scale Cantilevers in Shock and Vibration Stimuli
,”
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(
DTIP
), Nice, France, Apr. 9–11, pp.
2
7
.
18.
Srikar
,
V. T.
, and
Senturia
,
S. D.
,
2002
, “
The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments
,”
J. Microelectromech. Syst.
,
11
(
3
), pp.
206
214
.
19.
Li
,
G.
, and
Shemansky
,
F.
, Jr.
,
2000
, “
Drop Test and Analysis on Micro-Machined Structures
,”
Sens. Actuators, A
,
85
(
1–3
), pp.
280
286
.
20.
Ghisi
,
A.
,
Fachin
,
F.
,
Mariani
,
S.
, and
Zerbini
,
S.
,
2009
, “
Multi-Scale Analysis of Polysilicon MEMS Sensors Subject to Accidental Drops: Effect of Packaging
,”
Microelectron. Reliab.
,
49
(
3
), pp.
340
349
.
21.
Alsaleem
,
F.
,
Younis
,
M. I.
, and
Miles
,
R.
,
2008
, “
An Investigation Into the Effect of the PCB Motion on the Dynamic Response of MEMS Devices Under Mechanical Shock Loads
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031002
.
22.
Meng
,
J.
, Mattila, T., Dasgupta, A., Sillanpaa, M., Jaakkola, R., Luo, G., and Anderson, K.,
2012
, “
Drop Qualification of MEMS Components in Handheld Electronics at Extremely High Accelerations
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp. 1020–1027.
23.
Meng
,
J.
, Mattila, T., Dasgupta, A., Sillanpaa, M., Jaakkola, R., Anderson, K., and Hussa, E.,
2012
, “
Testing and Multi-Scale Modeling of Drop and Impact Loading of Complex MEMS Microphone Assemblies
,”
13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Cascais, Portugal, Apr. 16–18, pp.
1/8
8/8
.
24.
Meng
,
J.
, and
Dasgupta
,
A.
,
2016
, “
MEMS Packaging Reliability in Board-Level Drop Tests Under Severe Shock and Impact Loading Conditions—Part II: Fatigue Damage Modeling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
11
), pp.
1604
1614
.
25.
Meng
,
J.
,
Douglas
,
S. T.
, and
Dasgupta
,
A.
,
2016
, “
MEMS Packaging Reliability in Board-Level Drop Tests Under Severe Shock and Impact Loading Conditions—Part I: Experiment
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
11
), pp.
1595
1603
.
26.
Meng
,
J.
, and
Dasgupta
,
A.
,
2015
, “
Influence of Secondary Impact on Failure Modes in PWAs With High Resonant Frequency
,”
ASME
Paper No. IPACK2015-48669.
27.
Meng
,
J.
, and
Dasgupta
,
A.
,
2016
, “
Influence of Secondary Impact on Printed Wiring Assemblies—Part I: High Frequency ‘Breathing Mode’ Deformations in the Printed Wiring Board
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010914
.
28.
Danny
,
H. D.
, and
Frew
,
J.
,
2009
, “
A Modified Hopkinson Pressure Bar Experiment to Evaluate a Damped Piezoresistive MEMS Accelerometer
,”
SEM Annual Conference
, Albuquerque, NM, June 1–4, pp.
1
8
.
29.
Li
,
J.
, Makkonen, J., Broas, M., Hokka, J., Mattila, T. T., Paulasto-Kröckel, M., Meng, J., and Dasgupta, A.,
2013
, “
Reliability Assessment of a MEMS Microphone Under Shock Impact Loading
,”
14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Wroclaw, Poland, Apr. 14–17, pp.
1
6
.
30.
Meng
,
J.
, Dasgupta, A., Sillanpaa, M., Hussa, E., Turkkila, T., Zhang, H., Salminen, T., and Halkola, V.,
2015
, “
Side Impact Reliability of Micro-Switches
,”
65th IEEE Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 26–29, pp.
2108
2113
.
31.
Dasgupta
,
A.
,
Habtour
,
E.
,
Sridharan
,
R.
, and
Lin
,
E.
,
2015
, “
Durability of Large Electronic Components Undergoing Multi-Axial Vibratory Excitation
,”
ASME
Paper No. IPACK2015-48709.
32.
Owolabi
,
G.
, Peterson, A., Habtour, E., Riddick, J., Coatney, M., Olasumboye, A., and Bolling, D.,
2016
, “
Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading
,”
Int. J. Mech. Mater. Eng.
,
11
(
1
), pp.
3
11
.
33.
Habtour
,
E.
, Cole, D. P., Riddick, J. C., Weiss, V., Robeson, M., Sridharan, R., and Dasgupta, A.,
2016
, “
Detection of Fatigue Damage Precursor Using a Nonlinear Vibration Approach
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1442
1463
.
34.
Habtour
,
E.
,
Cole
,
D. P.
,
Stanton
,
S. C.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Damage Precursor Detection for Structures Subjected to Rotational Base Vibration
,”
Int. J. Non-Linear Mech.
,
82
(
2016
), pp.
49
58
.
35.
Tee
,
T. Y.
,
Luan
,
J.
,
Pek
,
E.
,
Lim
,
C.-T.
, and
Zhong
,
Z.
,
2004
, “
Advanced Experimental and Simulation Techniques for Analysis of Dynamic Responses During Drop Impact
,”
54th IEEE Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 1–4, pp.
1088
1094
.
36.
Balachandran
,
B.
, and
Magrab
,
E.
,
2008
,
Vibrations
,
Cengage Learning
,
Boston, MA
.
37.
Bridgman
,
P. W.
,
1935
, “
Effects of High Shearing Stress Combined With High Hydrostatic Pressure
,”
Phys. Rev.
,
48
(
10
), pp.
825
847
.
38.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
ASTM
Internal Friction, Damping, and Cyclic Plasticity, West Conshohocken, PA.
39.
Wong
,
E. H.
,
2004
, “
Dynamics of Board-Level Drop Impact
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
200
207
.
40.
Douglas
,
S. T.
,
Meng
,
J.
,
Akman
,
J.
,
Yildiz
,
I.
,
Al-Bassyiouni
,
M.
, and
Dasgupta
,
A.
,
2011
, “
The Effect of Secondary Impacts on PWB-Level Drop Tests at High Impact Accelerations
,”
12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Linz, Austria, Apr. 18–20, pp.
1/6
6/6
.
You do not currently have access to this content.