The packaging of electronic and microelectromechanical systems (MEMS) devices is an important part of the overall manufacturing process as it ensures mechanical robustness as well as required electrical/electromechanical functionalities. The packaging integration process involves the selection of packaging materials and technology, process design, fabrication, and testing. As the demand of functionalities of an electronic or MEMS device is increasing every passing year, chip size is getting larger and is occupying the majority of space within a package. This requires innovative packaging technologies so that integration can be done with less thermal/mechanical effect on the nearby components. Laser processing technologies for electronic and MEMS packaging have potential to obviate some of the difficulties associated with traditional packaging technologies and can become an attractive alternative for small-scale integration of components. As laser processing involves very fast localized and heating and cooling, the laser can be focused at micrometer scale to perform various packaging processes such as dicing, joining, and patterning at the microscale with minimal or no thermal effect on surrounding material or structure. As such, various laser processing technologies are currently being explored by researchers and also being utilized by electronic and MEMS packaging industries. This paper reviews the current and future trend of electronic and MEMS packaging and their manufacturing processes. Emphasis is given to the laser processing techniques that have the potential to revolutionize the future manufacturing of electronic and MEMS packages.

References

References
1.
Datta
,
M.
,
Osaka
,
T.
, and
Schultze
,
J. W.
,
2004
,
Microelectronic Packaging
,
CRC Press
,
Boca Raton, FL
.
2.
Vardaman
,
E. J.
,
2015
, “
IoT and the Impact on MEMS and Sensors Packaging
,” Tech Search International Report, Tech Search International, Austin, TX, accessed Feb. 28, 2017, http://www.meptec.org/resources/4%20-%20vardaman.pdf
3.
LaPedus
,
M.
, 2012, “
Foundry Landscape Changes in 3D
,” Semiconductor Engineering, accessed Feb. 28, 2017, http://semiengineering.com/foundry-landscape-changes-in-3d/
4.
Szendiuch
,
I.
,
2011
, “
Development in Electronic Packaging—Moving to 3D System Configuration
,”
Radio Eng.
,
209
(
1
), pp.
214
220
.
5.
Tummala
,
R.
,
2001
,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
6.
Andersson
,
O.
, and
Parker
,
K.
,
2014
, “
High Power Diode Laser Cladding
,” Fabricating and Metalworking, Birmingham, AL, accessed Feb. 28, 2016, http://www.fabricatingandmetalworking.com/2014/03/high-power-diode-laser-cladding/
7.
Gilleo
,
K.
,
2006
, “
MEMS Packaging: History and Current Trends
,” MEMS J., 8, epub, accessed Mar. 22, 2017, http://www.memsjournal.com/2006/08/mems_packaging_.html
8.
Bustillo
,
J. M.
,
Howe
,
R. T.
, and
Muller
,
R. S.
,
1998
, “
Surface Micromachining for Microelectromechanical Systems
,”
Proc. IEEE
,
86
(
8
), pp.
1552
1574
.
9.
Dzarnoski
,
J.
, and
Johansson
,
S.
,
2014
, “
Ultra Small Hearing Aid Electronic Packaging Enabled by Chip-In-Flex
,”
IEEE 64th Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 27–30, 157–164.
10.
TRUMPF
, 2016, “Laser Cutting and Drilling,” TRUMPF, Plymouth, MI, accessed Feb. 28, 2016, http://www.trumpf-laser.com
11.
Coherent
, 2016, “Laser Cutting and Applications,” Coherent Inc., Santa Clara, CA, accessed Feb. 28, 2016, https://www.coherent.com
12.
Hamamatsu Photonics KK, 2014, “Stealth Dicing Technical Information for MEMS,” Technical Report, Hamamatsu Photonics KK, Iwata, Japan, accessed Mar. 22, 2017, https://www.hamamatsu.com/resources/pdf/etd/SD_tech_forMEMS_TLAS9005E.pdf
13.
Marinov
,
V.
,
Swenson
,
O.
,
Miller
,
R.
,
Sarwar
,
F.
,
Atanasov
,
Y.
,
Semler
,
M.
, and
Datta
,
S.
,
2012
, “
Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
4
), pp.
569
577
.
14.
Marinov
,
V. R.
,
Swenson
,
O.
,
Atanasov
,
Y.
, and
Schneck
,
N.
,
2013
, “
Laser-Assisted Ultrathin die Packaging: Insights From a Process Study
,”
Microelectron. Eng.
,
101
, pp.
23
30
.
15.
PHILICAM,
2015
, “
CO2 Laser Tube Cutting Parameter
,” Jinan Ruofen Machinery Co. Ltd, Shandong, China, accessed Feb. 28, 2016, http://www.co2lasercutter.cn/support/knowledge/35.html
16.
Chaminade
,
C.
,
Fogarassy
,
E.
, and
Boisselier
,
D.
,
2006
, “
Diode Laser Soldering Using a Lead-Free Filler Material for Electronic Packaging Structures
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4406
4410
.
17.
Liu
,
Y.
,
Zeng
,
L.
, and
Wang
,
C.
,
2008
, “
In-Situ Temperature Monitoring for Process Control in Laser Assisted Polymer Bonding for MEMS Packaging
,”
IEEE 2nd Electronics System Integration Technology Conference
(
ESTC
), Greenwich, London, Sept. 1–8, pp. 199–205.
18.
LPKF
, 2016, “LDS Technology,” LPKF Laser and Electronics AG, Garbsen, Germany, accessed Feb. 28, 2016, http://www.lpkf.com
19.
Goth
,
C.
, and
Romer
,
M.
, 2014, “
Laser Direct Structuring and Two-Component Injection Molding for MID Series Production
,” HARTING Mitronics, Bern, Switzerland, accessed Feb. 28, 2016, http://www.harting-mitronics.ch/fileadmin/hartingmitronics/white_papers/Laser_direct_structuring_and_two-component_injection_molding_for_MID_series_production.pdf
20.
LaserMicronics, 2016, “
Three-Dimensional Circuits With LDS—Laser Direct Structuring and Metallization for 3D Mechatronic Integrated Devices
,” LaserMicronics, Garbsen, Germany, accessed Feb. 28, 2017, http://www.lasermicronics.com/_mediafiles/80-lds-technology-for-moulded-interconnect-devices.pdf
21.
Gower
,
M. C.
,
1994
, “
Excimer Lasers: Current and Future Applications in Industry and Medicine
,”
Laser Processing in Manufacturing
,
R. C.
Crafer
and
P. J.
Oakley
, eds., Springer, Dordrecht, The Netherlands, pp. 189–271.
22.
Bauerle
,
D.
,
1986
,
Chemical Processing With Lasers
, Vol.
1
,
Springer-Verlag
, Berlin.
23.
Kovacs
,
G. T. A.
,
Maluf
,
N. L.
, and
Petersen
,
K. E.
,
1998
, “
Bulk Micromachining of Silicon
,”
Proc. IEEE
,
86
(
8
), pp.
1536
1551
.
24.
Sun
,
Y.
, and
Swenson
,
E.
,
2003
, “
Lasers in Electronics Packaging
,” Fifth International Conference on Electronic Packaging Technology (
ICEPT
), Shanghai, China, Oct. 28–30, p. 137.
25.
Ferguson
,
A.
,
2008
, “
Comparison of Drilling Rates and Tolerances of Laser-Drilled Holes in Silicon Nitride and Polyimide Vertical Probe Cards
,”
IEEE SW Test Workshop, Semiconductor Test Workshop
, San Diego, CA, June 8–11, accessed Feb. 28, 2017, http://www.swtest.org/swtw_library/2008proc/pdf/s06_01_ferguson_swtw2008.pdf
26.
All Flex
, 2016, “Existing Flexible Circuits,” All Flex Flexible Circuits, Northfield, MN, accessed Feb. 28, 2017, http://www.allflexinc.com/blog/excising-flexible-circuits/
27.
Bovatsek
,
J. M.
, and
Patel
,
R. S.
,
2010
, “
Highest-Speed Dicing of Thin Silicon Wafers With Nanosecond-Pulse 355nm q-Switched Laser Source Using Line-Focus Fluence Optimization Technique
,”
Proc. SPIE
,
7585
, p. 75850K.
28.
FOTONiKA
, 2017, “FOTONiKA, Yari iletken teknolojileri,” FOTONIKA INC., Ankara, Turkey, accessed Feb. 28, 2017, http://www.fotonika.com.tr/index.php/en/
29.
Way
,
D. W. C.
, and
Ying
,
L. C.
,
2008
, “
High Speed Wafer Dicing With Ablation Laser Cut
,” IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (
IEMT
), Penang, Malaysia, Nov. 4–6.
30.
Haupt
,
O.
,
Siegel
,
F.
,
Schoonderbeek
,
A.
,
Richter
,
L.
,
Kling
,
R.
, and
Ostendorf
,
A.
,
2008
, “
Laser Dicing of Silicon: Comparison of Ablation Mechanisms With a Novel Technology of Thermally Induced Stress
,”
J. Laser Micro/Nanoeng.
,
3
(
3
), pp.
135
140
.
31.
Hamamatsu Photonics KK, 2005, “Stealth Dicing Technology and Applications,” Hamamatsu Photonics KK, Iwata, Japan, accessed Mar. 22, 2017, https://www.hamamatsu.com/resources/pdf/etd/SD_tech_TLAS9004E.pdf
32.
Kumagai
,
M.
,
Uchiyama
,
N.
,
Ohmura
,
E.
,
Sugiura
,
R.
,
Atsumi
,
K.
, and
Fukumitsu
,
K.
,
2007
, “
Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing
,”
IEEE Trans. Semiconductor Manuf.
,
20
(
3
), pp.
259
265
.
33.
Rofin/Coherent
, 2017, “Laser Soldering: Where Conventional Soldering Techniques Reach Their Limits,” Rofin/Coherent, Hamburg, Germany, accessed Feb. 28, 2017, https://www.rofin.com/en/applications/laser-soldering-and-brazing/laser-soldering/
34.
Choi
,
W.-S.
, and
Kim
,
J.
,
2012
, “
Laser-Assisted Deposition of Cu Bumps for Microelectronic Packaging
,”
Trans. Nonferrous Metals Soc. China
,
22
(Suppl. 3), pp.
s683
s687
.
35.
LPKF Laser and Electronics
, 2014, “Three-Dimensional Circuits: LPKF LDS: Laser Direct Structuring for 3D Molded Interconnect Devices,” LPKF Laser & Electronics AG, Garbsen, Germany, accessed Feb. 28, 2017, http://www.lpkf.com/_mediafiles/1797-lpkf-laser-direct-structuring-en.pdf
36.
Kämper
,
K.-P.
,
Dopper
,
J.
,
Ehrfeld
,
W.
, and
Oberbeck
,
S.
,
1998
, “
A Self-Filling Low-Cost Membrane Micropump
,” IEEE Eleventh Annual International Workshop on Micro Electro Mechanical Systems (
MEMS
), Heidelberg, Germany, Jan. 25–29, pp.
432
437
.
37.
Newaz
,
G.
,
Mian
,
A.
,
Sultana
,
T.
,
Mahmood
,
T.
,
Georgiev
,
D. G.
,
Auner
,
G.
,
Witte
,
R.
, and
Herfurth
,
H.
,
2006
, “
A Comparison Between Glass/Polyimide and Titanium/Polyimide Microjoint Performances in Cerebrospinal Fluid
,”
J. Biomed. Mater. Res. Part A
,
79
(
1
), pp.
159
165
.
38.
Mian
,
A.
,
Sultana
,
T.
,
Georgiev
,
D.
,
Witte
,
R.
,
Herfurth
,
H.
,
Auner
,
G.
, and
Newaz
,
G.
,
2009
, “
Postimplantation Pressure Testing and Characterization of Laser Bonded Glass/Polyimide Microjoints
,”
J. Biomed. Mater. Res. Part B
,
90
(
2
), pp.
614
620
.
39.
Mian
,
A.
,
Law
,
J.
, and
Newaz
,
G.
,
2010
, “
Analysis of Laser Fabricated Microjoint Performance in Cerebrospinal Fluid Using a Computational Approach
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
1
), pp.
117
124
.
40.
Mahmooda
,
T.
,
Miane
,
A.
,
Amine
,
M. R.
,
Auner
,
G.
,
Witte
,
R.
,
Herfurth
,
H.
, and
Newaza
,
G.
,
2007
, “
Finite Element Modeling of Transmission Laser Microjoining Process
,”
J. Mater. Process. Technol.
,
186
(
1–3
), pp.
37
44
.
41.
Georgiev
,
D. G.
,
Sultana
,
T.
,
Mian
,
A.
, and
Auner
,
G.
,
2005
, “
Laser Fabrication and Characterization of Sub-Millimeter Joints Between Polyimide and Ti-Coated Borosilicate Glass
,”
J. Mater. Sci.
,
40
(
21
), pp.
5641
5647
.
42.
Mian
,
A.
,
Newaz
,
G.
,
Mahmood
,
T.
, and
Auner
,
G.
,
2007
, “
Mechanical Characterization of Glass/Polyimide Microjoints Fabricated Using CW Fiber and Diode Lasers
,”
J. Mater. Sci.
,
42
(
19
), pp.
8150
8157
.
43.
Mian
,
A.
,
Newaz
,
G.
,
Georgiev
,
D. G.
,
Rahman
,
N.
,
Vendra
,
L.
,
Auner
,
G.
,
Witte
,
R.
, and
Herfurth
,
H.
,
2007
, “
Performance of Laser Bonded Glass/Polyimide Microjoints in Cerebrospinal Fluid
,”
J. Mater. Sci.: Mater. Med.
,
18
(
3
), pp.
417
427
.
44.
Mian
,
A.
,
Newaz
,
G.
,
Vendra
,
L.
,
Rahman
,
N.
,
Georgiev
,
D. G.
,
Auner
,
G.
,
Witte
,
R.
, and
Herfurth
,
H.
,
2005
, “
Laser Bonded Microjoints Between Titanium and Polyimide for Applications in Medical Implants
,”
J. Mater. Sci.: Mater. Med.
,
16
(
3
), pp.
229
237
.
45.
Hailat
,
M.
,
Mian
,
A.
,
Chaudhury
,
Z. A.
,
Newaz
,
G.
,
Patwa
,
R.
, and
Herfurth
,
H. J.
,
2012
, “
Laser Micro-Welding of Aluminum and Copper With and Without Tin Foil Alloy
,”
Microsyst. Technol.
,
18
(
1
), pp.
103
112
.
46.
Mian
,
A.
,
Mahmood
,
T.
,
Auner
,
G.
,
Witte
,
R.
,
Herfurth
,
H.
, and
Newaz
,
G.
,
2006
, “
Effects of Laser Parameters on the Mechanical Response of Laser Irradiated Micro-Joints
,”
Mater. Res. Soc. Symp. Proc.
,
926
, pp.
90
95
.
47.
Mian
,
A.
,
Sultana
,
T.
,
Auner
,
G.
, and
Newaz
,
G.
,
2007
, “
Bonding Mechanisms of Laser-Fabricated Titanium/Polyimide and Titanium Coated Glass/Polyimide Microjoints
,”
Surf. Interface Anal.
,
39
(
6
), pp.
506
511
.
48.
Lei
,
W.
, and
Raman
,
S.
, 2005, “
UV Laser Solutions for Electronic Interconnect and Packaging
,”
IEEE 6th International Conference on Electronic Packaging Technology
(
ICEPT
), Shenzhen, China, Aug. 30–Sept. 2.
49.
Lorenz
,
N.
,
Smith
,
M. D.
, and
Hand
,
D. P.
,
2011
, “
Wafer-Level Packaging of Silicon to Glass With a BCB Intermediate Layer Using Localised Laser Heating
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2257
2262
.
50.
Holmes
,
A. S.
,
2001
, “
Laser Fabrication and Assembly Processes for MEMS
,”
Proc. SPIE
,
4274
, p.
297
.
51.
Wanke
,
M. C.
,
Lehmann
,
O.
,
Müller
,
K.
,
Wen
,
Q.
, and
Stuke
,
M.
,
1997
, “
Laser Rapid Prototyping of Photonic Band-Gap Microstructures
,”
Science
,
275
(
5304
), pp.
1284
1286
.
52.
Zhu
,
M.-J.
,
Li
,
S.
,
Zhao
,
X.
, and
Xiong
,
D.-D.
,
2014
, “
Laser-Weldable Sip‐SiCp/Al Hybrid Composites With Bilayer Structure for Electronic Packaging
,”
Trans. Nonferrous Met. Soc. China
,
24
(
4
), pp.
1032
1038
.
53.
Das
,
R. N.
,
Egitto
,
F. D.
, and
Markovich
,
V. R.
,
2010
, “
Laser Processing of Materials: A New Strategy Toward Materials Design and Fabrication for Electronic Packaging
,”
Circuit World
,
36
(
2
), pp.
24
32
.
54.
Müllenborn
,
M.
,
Dirac
,
H.
,
Peterson
,
J. W.
, and
Bouwstra
,
S.
,
1995
, “
Fast 3D Laser Micromachining of Silicon for Micromechanical and Microfluidic Applications
,” The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX (
Transducers
), Stockholm, Sweden, June 25–29, pp.
166
169
.
55.
Müllenborn
,
M.
,
Grey
,
F.
, and
Bouwstra
,
S.
,
1997
, “
Laser Direct Writing on Structured Substrates
,”
J. Micromech. Microeng.
,
7
(
3
), pp.
125
127
.
56.
Lappalainenet
,
J.
,
Frantti
,
J.
,
Moilanen
,
H.
, and
Leppävuori
,
S.
,
1995
, “
Excimer Laser Ablation of PZT Thin Films on Silicon Cantilever Beams
,”
Sens. Actuators A
,
46
(
1–3
), pp.
104
109
.
57.
Maeda
,
R.
,
Kikuchi
,
K. M.
,
Schroth
,
A.
,
Umezawa.
,
A.
, and
Matsumoto
,
S.
,
1997
, “
Deposition of PZT Thin Films by Pulsed Laser Ablation for MEMS Application
,”
Proc. SPIE
,
3242
, pp.
372
379
.
58.
Ikuta
,
K.
,
Hayashi
,
M.
,
Matsuura
,
T.
, and
Fujishiro
,
H.
,
1994
, “
Shape Memory Alloy Thin Film Fabricated by Laser Ablation
,” IEEE Workshop on Micro Electro Mechanical Systems (
MEMS
), Oiso, Japan, Jan. 25–28, pp.
25
28
.
59.
Elshabini
,
A.
,
Wang
,
G.
, and,
Barlow
,
F.
,
2006
, “
Future Trends in Electronic Packaging
,”
Proc. SPIE
,
6172
, pp.
255
262
.
60.
Gilleo
,
K.
,
2006
, “
The Future of Packaging
,” All Flex Flexible Circuits, Northfield, MN, accessed Feb. 28, 2017, http://www.allflexinc.com/wp-content/uploads/2013/09/The-Future-of-Packaging.pdf
61.
Minorikawa
,
H.
, and
Suda
,
S.
,
1990
, “
Current Status and Future Trends of Electronic Packaging in Automotive Applications
,”
SAE
Technical Paper No. 901134.
62.
Yoshihiri
,
N.
, and
Shigeki
,
K.
, 2013, “
Technology Trends and Future History of Semiconductor Packaging Substrate Materials
,” Hitachi Chemical Technical Report No.
55
.
63.
Cho, Y., Parmar, N. S., Nahm, S., and Choi, J. W., 2017, “Full Range Optical and Electrical Properties of Zn-doped SnO2 and Oxide/Metal/Oxide Multilayer Thin Films Deposited on Flexible PET Substrate,”
J. Alloys Compd.
,
694
, pp. 217–222.
64.
Maarten
,
V.
,
2013
, “
An Overview of Emerging Trends in MEMS Packaging
,” MEMS J., 5, epub, accessed Mar. 22, 2017 http://www.memsjournal.com/2013/05/an-overview-of-emerging-trends-in-mems-packaging.html
65.
Yole Developement,
2001
, “
Trends in MEMS Manufacturing and Packaging
,” International Frequency Sensor Association (IFSA), Waterloo, ON, Canada, accessed Feb. 28, 2017, http://www.sensorsportal.com/HTML/Trends_in_MEMS.htm
66.
Heeren
,
H. V.
, and
Salomon
,
P.
,
2007
,
MEMS Recent Developments, Future Directions
,
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University
,
Loughborough, UK
.
67.
Pryputniewicz
,
R. J.
,
2012
, “
Current Trends and Future Directions in MEMS
,”
Exp. Mech.
,
52
(
3
), pp.
289
303
.
You do not currently have access to this content.