Due to the compact and modular nature of CubeSats, thermal management has become a major bottleneck in system design and performance. In this study, we outline the development, initial testing, and modeling of a flat, conformable, lightweight, and efficient two-phase heat strap called FlexCool, currently being developed at Roccor. Using acetone as the working fluid, the heat strap has an average effective thermal conductivity of 2149 W/m K, which is approximately five times greater than the thermal conductivity of pure copper. Moreover, the heat strap has a total thickness of only 0.86 mm and is able to withstand internal vapor pressures as high as 930 kPa, demonstrating the suitability of the heat strap for orbital environments where pressure differences can be large. A reduced-order, closed-form theoretical model has been developed in order to predict the maximum heat load achieved by the heat strap for different design and operating parameters. The model is validated using experimental measurements and is used here in combination with a genetic algorithm to optimize the design of the heat strap with respect to maximizing heat transport capability.

References

References
1.
Swartwout
,
M
.,
2013
, “
The First One Hundred CubeSats: A Statistical Look
,”
J. Space Sci.
,
2
(
2
), pp.
213
233
.
2.
Cotter
,
T. P.
,
1984
, “
Principles and Prospects for Micro Heat Pipes
,” NASA STI/Recon Technical Report No.
84
, p.
29149.
3.
Babin
,
B. R.
,
Peterson
,
G. P.
, and
Wu
,
D.
,
1990
, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
595
601
.
4.
Cao
,
Y.
,
Gao
,
M.
,
Beam
,
J. E.
, and
Donovan
,
B.
,
1997
, “
Experiments and Analyses of Flat Miniature Heat Pipes
,”
J. Thermophys. Heat Transfer
,
11
(
2
), pp.
158
164
.
5.
Hassan
,
H.
, and
Harmand
,
S.
,
2013
, “
Parametric Study of the Effect of the Vapor Chamber Characteristics on Its Performance
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111008
.
6.
Parhizi
,
M.
,
Merrikh
,
A. A.
, and
Jain
,
A.
,
2014
, “
Investigation of Two-Phase, Vapor Chamber Based Thermal Management of Multiple Microserver Chips
,”
ASME
Paper No. IMECE2014-39928.
7.
Escobar
,
S.
,
Kumari
,
N.
,
Shih
,
R.
,
Anthony
,
S.
, and
Bash
,
C.
,
2015
, “
Liquid Flow Analysis in Porous Media for Large Vapor Chamber With Multiple Heat Sources
,”
ASME
Paper No. IPACK2015-48770.
8.
Hideyama
,
F.
,
Nonoshita
,
S.
,
Koito
,
Y.
, and
Tomimura
,
T.
,
2015
, “
Fabrication of a Vapor Chamber on a Plastic Board
,”
ASME
Paper No. IPACK2015-48554.
9.
Patankar
,
G.
,
Mancin
,
S.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
MacDonald
,
M. A.
,
2016
, “
A Method for Thermal Performance Characterization of Ultrathin Vapor Chambers Cooled by Natural Convection
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010903
.
10.
Xiaohong
,
H.
,
Guan
,
J.
, and
Zhao
,
J.
,
2016
, “
An Experimental Study on the Thermal Performance of the Flat Heat Pipe
,”
ASME
Paper No. MNHMT2016-6496.
11.
Oshman
,
C.
,
Shi
,
B.
,
Li
,
C.
,
Yang
,
R.
,
Lee
,
Y. C.
,
Peterson
,
G. P.
, and
Bright
, V
. M.
,
2011
, “
The Development of Polymer-Based Flat Heat Pipes
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
410
417
.
12.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2015
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.
13.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4204
4215
.
14.
Weibel
,
J. A.
,
Garimella
,
S. V.
,
Murthy
,
J. Y.
, and
Altman
,
D. H.
,
2011
, “
Design of Integrated Nanostructured Wicks for High-Performance Vapor Chambers
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
6
), pp.
859
867
.
15.
Weibel
,
J. A.
,
Kim
,
S. S.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2013
, “
Experimental Characterization of Capillary-Fed Carbon Nanotube Vapor Chamber Wicks
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021501
.
16.
Plawsky
,
J. L.
,
Fedorov
,
A. G.
,
Garimella
,
S. V.
,
Ma
,
H. B.
,
Maroo
,
C. S.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano- and Microstructures for Thin-Film Evaporation—A Review
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
251
269
.
17.
Patankar
,
G.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2016
, “
Patterning the Condenser-Side Wick in Ultra-Thin Vapor Chamber Heat Spreaders to Improve Skin Temperature Uniformity of Mobile Devices
,”
Int. J. Heat Mass Transfer
,
101
, pp.
927
936
.
18.
Liu
,
T.
,
Lingamneni
,
S.
,
Palko
,
J.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Optimization of Hybrid Wick Structures for Extreme Spreading in High Performance Vapor Chambers
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
30
36
.
19.
Wei
,
M.
,
He
,
B.
,
Somasundaram
,
S.
,
Tan
,
C. S.
, and
Wang
,
E. N.
,
2016
, “
Optimization and Thermal Characterization of Uniform Micropillar Based Silicon Evaporator in Advanced Vapor Chambers
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
1019
1023
.
20.
Pratt
,
D. M.
, and
Kihm
,
K. D.
,
2003
, “
Binary Fluid Mixture and Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
867
874
.
21.
Panczak
,
T.
,
Ring
,
S.
,
Welch
,
M.
,
Johnson
,
D.
,
Cullimore
,
B. A.
, and
Bell
,
D. P.
,
2015
, “
Thermal Desktop: User's Manual
,”
C&R Technologies
, Boulder, CO.
22.
Hengeveld
,
D. W.
, Braun, J. E., Groll, E. A., and Williams A. D.,
2009
, “
Hot- and Cold-Case Orbits for Robust Thermal Control
,”
J. Spacecr. Rockets
,
46
(
6
), pp.
1249
1260
.
23.
F-Chart Software
,
2015
, “
EES: Engineering Equation Solver For the Microsoft Windows Operating System
,”
F-Chart Software
, Madison, WI.
24.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
,
Wiley
, New York.
25.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
, Washington, DC.
26.
Holdich
,
R. G.
,
2002
,
Fundamentals of Particle Technology
,
Midland Information Technology and Publishing
, Nottingham, UK.
27.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
28.
TWP
,
2016
, “
Wire Mesh
,” TWP, Berkeley, CA, accessed Apr. 18, 2017, www.twpinc.com
29.
Lewis
,
R.
,
Xu
,
S.
,
Liew
,
L.-A.
,
Coolidge
,
C.
,
Yang
,
R.
, and
Lee
,
Y.-C.
,
2015
, “
Thin Flexible Thermal Ground Planes: Fabrication and Scaling Characterization
,”
J. Microelectromech. Syst.
,
24
(
6
), pp.
2040
2048
.
30.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
,
Altman
,
D. H.
, and
North
,
M. T.
,
2012
, “
Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
9
), pp.
1465
1479
.
You do not currently have access to this content.