In this paper, heat transfer enhancement using liquid–liquid Taylor flow in miniscale curved tubing for isothermal boundary conditions is examined. Copper tubing with an inner tube diameter of D = 1.65 mm and different radii of curvature and lengths is used in the experiments. Taylor flow is created using water and low-viscosity silicone oils (0.65 cS, 1 cS, and 3 cS) to examine the effect of Prandtl number on heat transfer rates in curved tubing. A series of experiments are conducted using tubing with constant length and variable curvature as well as variable length and constant curvature. The experimental results are compared with models for liquid–liquid Taylor flow in straight tubing and single-phase flow in curved tubes. The results of the research highlight the effects of liquid–liquid Taylor flow in curved tubing. This research provides new insights into the effect of curvature on heat transfer enhancement for liquid–liquid Taylor flow in miniscale curved tubing, at a constant wall temperature.

References

References
1.
Yue
,
J.
,
Rebrov
,
E. V.
, and
Schouten
,
J. C.
,
2014
, “
Gas–Liquid–Liquid Three-Phase Flow Pattern and Pressure Drop in a Microfluidic Chip: Similarities With Gas–Liquid/Liquid–Liquid Flows
,”
R. Soc. Chem. J.
,
14
(
9
), pp.
1632
1649
.
2.
Ghobadi
,
M.
,
2014
, “
Experimental Measurement and Modeling of Heat Transfer in Spiral and Curved Channels
,”
Ph.D. thesis
, Memorial University, St. John's, NL, Canada.
3.
Talimi
,
V.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2012
, “
A Review on Numerical Studies of Slug Flow Hydrodynamics and Heat Transfer in Microtubes and Microchannels
,”
Int. J. Multiphase Flow
,
39
, pp.
88
104
.
4.
Donaldson
,
A. A.
,
Kirpalani
,
D. M.
, and
Macchi
,
A.
,
2011
, “
Curvature Induced Flow Pattern Transitions in Serpentine Mini-Channels
,”
Int. J. Multiphase Flow
,
37
(5), pp.
429
439
.
5.
Kirpalani
,
D. M.
,
Patel
,
T.
,
Mehrani
,
M.
, and
Macchi
,
A.
,
2008
, “
Experimental Analysis of the Unit Cell Approach for Two-Phase Flow Dynamics in Curved Flow Channels
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1095
1103
.
6.
Vashisth
,
S.
, and
Nigam
,
K.
,
2009
, “
Prediction of Flow Profiles and Interfacial Phenomena for Two-Phase Flow in Coiled Tubes
,”
Chem. Eng. Process.
,
48
(
1
), pp.
452
463
.
7.
Zhao
,
L.
, and
Guo
,
L. J.
,
2003
, “
Convective Boiling Heat Transfer and Two-Phase Flow Characteristics Inside a Small Horizontal Helically Coiled Tubing Once-Through Steam Generator
,”
Int. J. Heat Mass Transfer
,
46
(
25
), pp.
4779
4788
.
8.
Guo
,
L.
,
2002
, “
The Oil-Gas-Water Three-Phase Flow and Sand Separation Theories in Helically Coiled Tubing Separation Technology
,”
J. Eng. Thermophys.
,
23
(1), pp.
107
110
(in Chinese).
9.
Saxena
,
A. K.
,
Nigam
,
K. D. P.
,
Schumpe
,
A.
, and
Deckwer
,
W. D.
,
1996
, “
Liquid Phase Residence Time Distribution for Two Phase Flow in Coiled Tubes
,”
Can. J. Chem. Eng.
,
74
(
6
), pp.
861
866
.
10.
Murai
,
Y.
,
Yoshikawa
,
S.
,
Toda
,
S.
,
Ishikawa
,
M.
, and
Yamamoto
,
F.
,
2006
, “
Structure of Air-Water Two-Phase Flow in Helically Coiled Tubes
,”
Nucl. Eng. Des.
,
236
(
1
), pp.
94
106
.
11.
Kumar
,
V.
,
Vashisth
,
S.
,
Hoarau
,
Y.
, and
Nigam
,
P.
,
2007
, “
Slug Flow in Curved Microreactors: Hydrodynamic Study
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7494
7504
.
12.
Dogan
,
H.
,
Nas
,
S.
, and
Muradoglu
,
M.
,
2008
, “
Mixing of Miscible Liquids in Gas-Segmented Serpentine Channels
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1149
1158
.
13.
Wang
,
C.-C.
,
Chen
,
I. Y.
,
Lin
,
Y.-T.
, and
Chang
,
Y.-J.
,
2008
, “
A Visual Observation of the Air-Water Two-Phase Flow in Small Diameter Tubes Subject to the Influence of Vertical Return Bends
,”
Chem. Eng. Res. Des.
,
86
(
11
), pp.
1223
1235
.
14.
Vashisth
,
S.
, and
Nigam
,
K.
,
2009
, “
Liquid-Phase Residence Time Distribution for Two-Phase Flow in Coiled Flow Inverter
,”
Ind. Eng. Chem. Res
,
47
(
10
), pp.
3630
3638
.
15.
Nadim
,
N.
, and
Chandratilleke
,
T.
,
2014
, “
Secondary Flow Structure and Thermal Behaviour of Immiscible Two-Phase Fluid Flow in Curved Channels
,”
Int. J. Therm. Sci.
,
82
, pp.
9
22
.
16.
Wongwises
,
S.
, and
Polsongkram
,
M.
,
2006
, “
Condensation Heat Transfer and Pressure Drop of HFC-134a in a Helically Coiled Concentric Tube-in-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
49
(23–24), pp.
4386
4398
.
17.
Kang
,
T. G.
,
Hulsen
,
M. A.
,
Anderson
,
P. D.
,
den Toonder
,
J.
, and
Meijer
,
H.
,
2007
, “
Chaotic Advection Using Passive and Externally Actuated Particles in a Serpentine Flow
,”
Chem. Eng. Sci.
,
62
(
23
), pp.
6677
6686
.
18.
Ghobadi
,
M.
, and
Muzychka
,
Y. S.
,
2013
, “
Effect of Entrance Region and Curvature on Heat Transfer in Mini Scale Curved Tubing at Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
65
, pp.
357
365
.
19.
Muzychka
,
Y. S.
, and
Ghobadi
,
M.
,
2016
, “
Measurement and Analysis of Laminar Heat Transfer Coefficients in Micro and Mini-Scale Ducts and Channels
,”
Int. J. Heat Transfer Eng.
,
37
(
11
), pp.
938
946
.
20.
Muzychka
,
Y. S.
,
Walsh
,
E.
, and
Walsh
,
P.
,
2011
, “
Heat Transfer Enhancement Using Laminar Gas-Liquid Segmented Plug Flows
,”
ASME J. Heat Transfer
,
133
(
4
), p.
041902
.
21.
Ghobadi
,
M.
, and
Muzychka
,
Y. S.
,
2014
, “
Fully Developed Heat Transfer in Mini Scale Coiled Tubing for Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
72
, pp.
87
97
.
22.
Muzychka
,
Y. S.
,
Walsh
,
E.
,
Walsh
,
P.
, and
Egan
,
V.
,
2011
, “
Non-Boiling Two Phase Flow in Microchannels
,”
Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles
,
S. K.
Mitra
and
S.
Chakraborty
, eds.,
CRC Press
,
Boca Raton, FL
.
23.
Awad
,
M. M.
, and
Muzychka
,
Y. S.
,
2008
, “
Effective Property Models for Homogeneous Two-Phase Flows
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
106
113
.
24.
Adrugi
,
M. W.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2016
, “
Heat Transfer in Liquid–Liquid Taylor Flow in a Mini-Scale Tube With Constant Wall Temperature
,”
ASME
Paper No. ICNMM2015-48272.
25.
Ghaini
,
A.
,
Mescher
,
A.
, and
David
,
A.
,
2011
, “
Hydrodynamics of Liquid–Liquid Slug Flow in Circular Microchannels
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1168
1178
.
26.
Eain
,
M. G.
,
Egan
,
V.
, and
Punch
,
J.
,
2015
, “
Local Nusselt Number Enhancements in Liquid–Liquid Taylor Flow
,”
Int. J. Heat Mass Transfer
,
80
, pp.
85
97
.
27.
Flores
,
A. G.
,
Crowe
,
K. E.
, and
Griffith
,
P.
,
1995
, “
Gas-Phase Secondary Flow in Horizontal, Stratified and Annular Two-Phase Flow
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
207
221
.
You do not currently have access to this content.