Stretchable electronics have been a subject of increased research over the past decade (Lacour, S., et al., 2006, “Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates,” Appl. Phys. Lett., 88(20), p. 204103; Lacour, S., et al., 2004, “Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits,” IEEE Electron Device Lett., 25(4), pp. 179–181; and Maghribi, M., et al., 2005, “Stretchable Micro-Electrode Array,” International IEEE-EMBS Conference on Microtechnologies in Medicine and Biology, pp. 80–83.). Although stretchable electronic devices are a relatively new area for the semiconductor/electronics industries, recent market research indicates that the market could be worth more than $900 million by 2023 (PR Newswire, 2015, “Stretchable Electronics Market Worth $911.37 Million by 2023,” PR Newswire, Albuquerque, NM.). This paper investigates mechanical testing methods designed to test the stretching capabilities of potential products across the electronics industry to help quantify and understand the mechanical integrity, response, and the reliability of these devices. Typically, the devices consist of stiff modules connected by stretchable traces (Loher, T., et al., 2006, “Stretchable Electronic Systems,” Electronics Packaging Technology Conference (EPTC '06), pp. 271–276.). They require electrical and mechanical connectivity between the modules to function. In some cases, these devices will be subject to biaxial and/or cyclic mechanical strain, especially for wearable applications. The ability to replicate these mechanical strains and understand their effect on the function of the devices is critical to meet performance, process, and reliability requirements. In this paper, methods for simulating biaxial and out-of-plane strains similar to what may occur in a wearable device on the human body are proposed. Electrical and/or optical monitoring (among other methods) can be used to determine cycles to failure depending on expected failure modes. Failure modes can include trace damage in stretchable regions, trace damage in functional component regions, or bulk stretchable material damage, among others. Three different methods of applying mechanical strain are described, including a stretchable air bladder method, membrane test method, and lateral expansion method.

References

1.
Lacour
,
S. P.
,
Chan
,
D.
,
Wagner
,
S.
,
Li
,
T.
, and
Suo
,
Z.
,
2006
, “
Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates
,”
Appl. Phys. Lett.
,
88
(
20
), p.
204103
.
2.
Lacour
,
S. P.
,
Jones
,
J.
,
Suo
,
Z.
, and
Wagner
,
S.
,
2004
, “
Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits
,”
IEEE Electron Device Lett.
,
25
(
4
), pp.
179
181
.
3.
Maghribi
,
M.
,
Hamilton
,
J.
,
Polla
,
D.
,
Rose
,
K.
,
Wilson
,
T.
, and
Krulevitch
,
P.
,
2002
, “
Stretchable Micro-Electrode Array [for retinal prosthesis]
,”
2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine and Biology
, Madison, WI, May 2–4, pp.
80
83
.
4.
MARKETSANDMARKETS,
2015
, “
Stretchable Electronics Market by Component (Battery, Conductor, Circuit, Electroactive Polymer and Others), Application (Health Care, Consumer Electronics, Automotive Electronics, Textile, Aerospace & Defense And Others), Geography - Trends & Forecast to 2015-2023
,” PR Newswire, Seattle, WA, Report No.
SE 3498
.
5.
Perry, T. S.,
2016
, “
Stretchable Electronics Have Their Coming Out Party at CES
,” IEEE Spectrum, New York, accessed Apr. 13, 2017, http://spectrum.ieee.org/view-from-the-valley/biomedical/devices/stretchable-electronics-have-their-coming-out-party-at-ces
6.
Loher
,
T.
,
Manessis
,
D.
,
Heinrich
,
R.
,
Schmied
,
B.
,
Vanfleteren
,
J.
,
Debaets
,
J.
,
Ostmann
,
A.
, and
Reichl
,
H.
,
2006
, “
Stretchable Electronic Systems
,”
8th Electronics Packaging Technology Conference
(
EPTC '06
), Singapore, Dec. 6–8, pp.
271
276
.
7.
Lowe
,
R.
,
Dooley
,
S.
,
Berrigan
,
D.
, and
Foley
,
J.
,
2015
, “
High Rate Experimental Test Method for Harsh Environment Stretchable Electronics
,”
MEMS and Nanotechnology
(Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
5
,
Springer
,
Cham, Switzerland
, pp.
89
96
.
8.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Nanshu
,
L.
, and
Rogers
,
J. A.
,
2012
, “
Flexible and Stretchable Electronics for Biointegrated Devices
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
113
128
.
9.
Wagner
,
S.
, and
Bauer
,
S.
,
2012
, “
Materials for Stretchable Electronics
,”
MRS Bull.
,
37
(
3
), pp.
207
213
.
10.
Moser
,
R.
,
Kettlgruber
,
G.
,
Siket
,
C. M.
,
Drack
,
M.
,
Graz
, I
. M.
,
Cakmak
,
U.
,
Major
,
Z.
,
Kaltenbrunner
,
M.
, and
Bauer
,
S.
,
2016
, “
From Playroom to Lab: Tough Stretchable Electronics Analyzed With a Tabletop Tensile Tester Made From Toy-Bricks
,”
Adv. Sci.
,
3
(
4
), p.
1500396
.
11.
Hocheng
,
H.
, and
Chen
,
C. M.
,
2014
, “
Design, Fabrication and Failure Analysis of Stretchable Electrical Routing
,”
Sensors
,
14
(
7
), pp.
11855
11877
.
12.
Yuan
,
J. H.
,
Pharr
,
M. M.
,
Feng
,
X. X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
Design of Stretchable Electronics Against Impact
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101009
.
13.
Fan
,
J. A.
,
Yeo
,
W.-H.
,
Su
,
Y.
,
Hattori
,
Y.
,
Lee
,
W.
,
Jung
,
S.-Y.
,
Zhang
,
Y.
,
Liu
,
Z.
,
Cheng
,
H.
,
Falgout
,
L.
,
Bajema
,
M.
,
Coleman
,
T.
,
Gregoire
,
D.
,
Larsen
,
R. J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Fractal Design Concepts for Stretchable Electronics
,”
Nat. Commun.
,
5
, p.
3266
.
14.
Gonzalez
,
M.
,
Axisa
,
F.
,
Bulcke
,
M. V.
,
Brosteaux
,
D.
,
Vandevelde
,
B.
, and
Vanfleteren
,
J.
,
2008
, “
Design of Metal Interconnects for Stretchable Electronic Circuits
,”
Microelectron. Reliab.
,
48
(
6
), pp.
825
832
.
15.
Li
,
Q.
, and
Tao
,
X. M.
,
2014
, “
Three-Dimensionally Deformable, Highly Stretchable, Permeable, Durable and Washable Fabric Circuit Boards
,”
Proc. R. Soc. A
,
470
(
2171
), p.
20140472
.
16.
Wang
,
Y.
,
Li
,
Z.
, and
Xiao
,
J.
,
2016
, “
Stretchable Thin Film Materials: Fabrication, Application, and Mechanics
,”
ASME. J. Electron. Packag.
,
138
(
2
), p.
020801
.
You do not currently have access to this content.