Specific function or application in electronics often requires assembly of heterogeneous materials in a single system. Schemes to achieve such goals are of critical importance for applications ranging from the study in basic cell biology to multifunctional electronics for diagnostics/therapeutics. In this review article, we will first briefly introduce a few assembly techniques, such as microrobotic assembly, guided self-assembly, additive manufacturing, and transfer printing. Among various heterogeneous assembly techniques, transfer printing represents a simple yet versatile tool to integrate vastly different materials or structures in a single system. By utilizing such technique, traditionally challenging tasks have been enabled and they include novel experimental platforms for study of two-dimensional (2D) materials and cells, bio-integrated electronics such as stretchable and biodegradable devices, and three-dimensional (3D) assembly with advanced materials such as semiconductors.

References

1.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
2.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.
3.
Studart
,
A. R.
,
2012
, “
Towards High-Performance Bioinspired Composites
,”
Adv. Mater.
,
24
(
37
), pp.
5024
5044
.
4.
Gu
,
G. X.
,
Su
,
I.
,
Sharma
,
S.
,
Voros
,
J. L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Three-Dimensional-Printing of Bio-Inspired Composites
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021006
.
5.
Ji
,
B.
, and
Gao
,
H.
,
2010
, “
Mechanical Principles of Biological Nanocomposites
,”
Annu. Rev. Mater. Res.
,
40
, pp.
77
100
.
6.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
, pp.
25
53
.
7.
Tang
,
Z.
,
Kotov
,
N. A.
,
Magonov
,
S.
, and
Ozturk
,
B.
,
2003
, “
Nanostructured Artificial Nacre
,”
Nat. Mater.
,
2
(
6
), pp.
413
418
.
8.
Erb
,
R. M.
,
Libanori
,
R.
,
Rothfuchs
,
N.
, and
Studart
,
A. R.
,
2012
, “
Composites Reinforced in Three Dimensions by Using Low Magnetic Fields
,”
Science
,
335
(
6065
), pp.
199
204
.
9.
Martin
,
J. J.
,
Fiore
,
B. E.
, and
Erb
,
R. M.
,
2015
, “
Designing Bioinspired Composite Reinforcement Architectures Via 3D Magnetic Printing
,”
Nat. Commun.
,
6
, p. 8641.
10.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
11.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci.
,
108
(
51
), pp.
20400
20403
.
12.
Teyssier
,
J.
,
Saenko
,
S. V.
,
Van Der Marel
,
D.
, and
Milinkovitch
,
M. C.
,
2015
, “
Photonic Crystals Cause Active Colour Change in Chameleons
,”
Nat. Commun.
,
6
, p. 6368.
13.
Zhao
,
Y.
,
Xie
,
Z.
,
Gu
,
H.
,
Zhu
,
C.
, and
Gu
,
Z.
,
2012
, “
Bio-Inspired Variable Structural Color Materials
,”
Chem. Soc. Rev.
,
41
(
8
), pp.
3297
3317
.
14.
Yu
,
C.
,
Li
,
Y.
,
Zhang
,
X.
,
Huang
,
X.
,
Malyarchuk
,
V.
,
Wang
,
S.
,
Shi
,
Y.
,
Gao
,
L.
,
Su
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Adaptive Optoelectronic Camouflage Systems With Designs Inspired by Cephalopod Skins
,”
Proc. Natl. Acad. Sci.
,
111
(
36
), pp.
12998
13003
.
15.
Nishimoto
,
S.
, and
Bhushan
,
B.
,
2013
, “
Bioinspired Self-Cleaning Surfaces With Superhydrophobicity, Superoleophobicity, and Superhydrophilicity
,”
RSC Adv.
,
3
(
3
), pp.
671
690
.
16.
Ganesh
,
V. A.
,
Raut
,
H. K.
,
Nair
,
A. S.
, and
Ramakrishna
,
S.
,
2011
, “
A Review on Self-Cleaning Coatings
,”
J. Mater. Chem.
,
21
(
41
), pp.
16304
16322
.
17.
Gao
,
X.
, and
Jiang
,
L.
,
2004
, “
Biophysics: Water-Repellent Legs of Water Striders
,”
Nature
,
432
(
7013
), p.
36
.
18.
Wong
,
T.-S.
,
Kang
,
S. H.
,
Tang
,
S. K.
,
Smythe
,
E. J.
,
Hatton
,
B. D.
,
Grinthal
,
A.
, and
Aizenberg
,
J.
,
2011
, “
Bioinspired Self-Repairing Slippery Surfaces With Pressure-Stable Omniphobicity
,”
Nature
,
477
(
7365
), pp.
443
447
.
19.
Kaltenbrunner
,
M.
,
Sekitani
,
T.
,
Reeder
,
J.
,
Yokota
,
T.
,
Kuribara
,
K.
,
Tokuhara
,
T.
,
Drack
,
M.
,
Schwödiauer
,
R.
,
Graz
,
I.
, and
Bauer-Gogonea
,
S.
,
2013
, “
An Ultra-Lightweight Design for Imperceptible Plastic Electronics
,”
Nature
,
499
(
7459
), pp.
458
463
.
20.
Guizzo
,
E.
, and
Goldstein
,
H.
,
2005
, “
The Rise of the Body Bots [Robotic Exoskeletons]
,”
IEEE Spectrum
,
42
(
10
), pp.
50
56
.
21.
Park
,
Y.-L.
,
Chen
,
B.-R.
,
Pérez-Arancibia
,
N. O.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E. C.
, and
Nagpal
,
R.
,
2014
, “
Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle–Foot Rehabilitation
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016007
.
22.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
23.
Gao
,
W.
,
Emaminejad
,
S.
,
Nyein
,
H. Y. Y.
,
Challa
,
S.
,
Chen
,
K.
,
Peck
,
A.
,
Fahad
,
H. M.
,
Ota
,
H.
,
Shiraki
,
H.
, and
Kiriya
,
D.
,
2016
, “
Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis
,”
Nature
,
529
(
7587
), pp.
509
514
.
24.
Sekitani
,
T.
, and
Someya
,
T.
,
2010
, “
Stretchable, Large-Area Organic Electronics
,”
Adv. Mater.
,
22
(
20
), pp.
2228
2246
.
25.
Yao
,
S.
, and
Zhu
,
Y.
,
2015
, “
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
,”
Adv. Mater.
,
27
(
9
), pp.
1480
1511
.
26.
Wang
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
9
), pp.
1201
1218
.
27.
Service
,
R. F.
,
2001
, “
Assembling Nanocircuits From the Bottom Up
,”
Science
,
293
(
5531
), pp.
782
785
.
28.
Zhang
,
Y.
,
Chen
,
B. K.
,
Liu
,
X.
, and
Sun
,
Y.
,
2010
, “
Autonomous Robotic Pick-and-Place of Microobjects
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
200
207
.
29.
Chaillet
,
N.
, and
Régnier
,
S.
,
2013
,
Microrobotics for Micromanipulation
,
Wiley
, Hoboken, NJ.
30.
Diller
,
E.
, and
Sitti
,
M.
,
2014
, “
Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers
,”
Adv. Funct. Mater.
,
24
(
28
), pp.
4397
4404
.
31.
Mølhave
,
K.
,
Wich
,
T.
,
Kortschack
,
A.
, and
Bøggild
,
P.
,
2006
, “
Pick-and-Place Nanomanipulation Using Microfabricated Grippers
,”
Nanotechnology
,
17
(
10
), p.
2434
.
32.
Diller
,
E.
, and
Sitti
,
M.
,
2013
, “
Micro-Scale Mobile Robotics
,”
Found. Trends Rob.
,
2
(
3
), pp.
143
259
.
33.
Tasoglu
,
S.
,
Diller
,
E.
,
Guven
,
S.
,
Sitti
,
M.
, and
Demirci
,
U.
,
2014
, “
Untethered Micro-Robotic Coding of Three-Dimensional Material Composition
,”
Nat. Commun.
,
5
, p. 3124.
34.
Sakar
,
M. S.
,
Steager
,
E. B.
,
Cowley
,
A.
,
Kumar
,
V.
, and
Pappas
,
G. J.
,
2011
, “
Wireless Manipulation of Single Cells Using Magnetic Microtransporters
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 19–13, pp.
2668
2673
.
35.
Servant
,
A.
,
Qiu
,
F.
,
Mazza
,
M.
,
Kostarelos
,
K.
, and
Nelson
,
B. J.
,
2015
, “
Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella
,”
Adv. Mater.
,
27
(
19
), pp.
2981
2988
.
36.
Hu
,
W.
,
Ishii
,
K. S.
,
Fan
,
Q.
, and
Ohta
,
A. T.
,
2012
, “
Hydrogel Microrobots Actuated by Optically Generated Vapour Bubbles
,”
Lab Chip
,
12
(
19
), pp.
3821
3826
.
37.
Tao
,
A.
,
Kim
,
F.
,
Hess
,
C.
,
Goldberger
,
J.
,
He
,
R.
,
Sun
,
Y.
,
Xia
,
Y.
, and
Yang
,
P.
,
2003
, “
Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy
,”
Nano Lett.
,
3
(
9
), pp.
1229
1233
.
38.
Acharya
,
S.
,
Panda
,
A. B.
,
Belman
,
N.
,
Efrima
,
S.
, and
Golan
,
Y.
,
2006
, “
A Semiconductor-Nanowire Assembly of Ultrahigh Junction Density by the Langmuir–Blodgett Technique
,”
Adv. Mater.
,
18
(
2
), pp.
210
213
.
39.
Tanase
,
M.
,
Silevitch
,
D.
,
Hultgren
,
A.
,
Bauer
,
L.
,
Searson
,
P.
,
Meyer
,
G. J.
, and
Reich
,
D.
,
2002
, “
Magnetic Trapping and Self-Assembly of Multicomponent Nanowires
,”
J. Appl. Phys.
,
91
(
10
), pp.
8549
8551
.
40.
Freer
,
E. M.
,
Grachev
,
O.
,
Duan
,
X.
,
Martin
,
S.
, and
Stumbo
,
D. P.
,
2010
, “
High-Yield Self-Limiting Single-Nanowire Assembly With Dielectrophoresis
,”
Nat. Nanotechnol.
,
5
(
7
), pp.
525
530
.
41.
He
,
W.-N.
, and
Xu
,
J.-T.
,
2012
, “
Crystallization Assisted Self-Assembly of Semicrystalline Block Copolymers
,”
Prog. Polym. Sci.
,
37
(
10
), pp.
1350
1400
.
42.
De Rosa
,
C.
,
Park
,
C.
,
Thomas
,
E. L.
, and
Lotz
,
B.
,
2000
, “
Microdomain Patterns From Directional Eutectic Solidification and Epitaxy
,”
Nature
,
405
(
6785
), pp.
433
437
.
43.
Singh
,
G.
,
Yager
,
K. G.
,
Berry
,
B.
,
Kim
,
H.-C.
, and
Karim
,
A.
,
2012
, “
Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films
,”
ACS Nano
,
6
(
11
), pp.
10335
10342
.
44.
Singh
,
G.
,
Yager
,
K. G.
,
Smilgies
,
D.-M.
,
Kulkarni
,
M. M.
,
Bucknall
,
D. G.
, and
Karim
,
A.
,
2012
, “
Tuning Molecular Relaxation for Vertical Orientation in Cylindrical Block Copolymer Films Via Sharp Dynamic Zone Annealing
,”
Macromolecules
,
45
(
17
), pp.
7107
7117
.
45.
Xia
,
Y.
,
Yang
,
P.
,
Sun
,
Y.
,
Wu
,
Y.
,
Mayers
,
B.
,
Gates
,
B.
,
Yin
,
Y.
,
Kim
,
F.
, and
Yan
,
H.
,
2003
, “
One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
,”
Adv. Mater.
,
15
(
5
), pp.
353
389
.
46.
Whang
,
D.
,
Jin
,
S.
,
Wu
,
Y.
, and
Lieber
,
C. M.
,
2003
, “
Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems
,”
Nano Lett.
,
3
(
9
), pp.
1255
1259
.
47.
Morrow
,
T. J.
,
Li
,
M.
,
Kim
,
J.
,
Mayer
,
T. S.
, and
Keating
,
C. D.
,
2009
, “
Programmed Assembly of DNA-Coated Nanowire Devices
,”
Science
,
323
(
5912
), p.
352
.
48.
Smith
,
B. D.
,
Mayer
,
T. S.
, and
Keating
,
C. D.
,
2012
, “
Deterministic Assembly of Functional Nanostructures Using Nonuniform Electric Fields
,”
Annu. Rev. Phys. Chem.
,
63
, pp.
241
263
.
49.
Wang
,
M.
,
He
,
L.
, and
Yin
,
Y.
,
2013
, “
Magnetic Field Guided Colloidal Assembly
,”
Mater. Today
,
16
(
4
), pp.
110
116
.
50.
Tasoglu
,
S.
,
Yu
,
C.
,
Gungordu
,
H.
,
Guven
,
S.
,
Vural
,
T.
, and
Demirci
,
U.
,
2014
, “
Guided and Magnetic Self-Assembly of Tunable Magnetoceptive Gels
,”
Nat. Commun.
,
5
, p. 4702.
51.
Erb
,
R. M.
,
Segmehl
,
J.
,
Charilaou
,
M.
,
Löffler
,
J. F.
, and
Studart
,
A. R.
,
2012
, “
Non-Linear Alignment Dynamics in Suspensions of Platelets Under Rotating Magnetic Fields
,”
Soft Matter
,
8
(
29
), pp.
7604
7609
.
52.
Chung
,
S. E.
,
Park
,
W.
,
Shin
,
S.
,
Lee
,
S. A.
, and
Kwon
,
S.
,
2008
, “
Guided and Fluidic Self-Assembly of Microstructures Using Railed Microfluidic Channels
,”
Nat. Mater.
,
7
(
7
), pp.
581
587
.
53.
Chung
,
S. E.
,
Jung
,
Y.
, and
Kwon
,
S.
,
2011
, “
Three-Dimensional Fluidic Self-Assembly by Axis Translation of Two-Dimensionally Fabricated Microcomponents in Railed Microfluidics
,”
Small
,
7
(
6
), pp.
796
803
.
54.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.
55.
Zhu
,
W.
,
Ma
,
X.
,
Gou
,
M.
,
Mei
,
D.
,
Zhang
,
K.
, and
Chen
,
S.
,
2016
, “
3D Printing of Functional Biomaterials for Tissue Engineering
,”
Curr. Opin. Biotechnol.
,
40
, pp.
103
112
.
56.
Au
,
A. K.
,
Huynh
,
W.
,
Horowitz
,
L. F.
, and
Folch
,
A.
,
2016
, “
3D-Printed Microfluidics
,”
Angew. Chem., Int. Ed.
,
55
(12), pp. 3862–3881.
57.
Egan
,
P.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2016
, “
Design and 3D Printing of Hierarchical Tissue Engineering Scaffolds Based on Mechanics and Biology Perspectives
,”
ASME
Paper No. DETC2016-59554.
58.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D.-H. T.
,
Cohen
,
D. M.
,
Toro
,
E.
,
Chen
,
A. A.
,
Galie
,
P. A.
, and
Yu
,
X.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.
59.
Arcaute
,
K.
,
Mann
,
B.
, and
Wicker
,
R.
,
2010
, “
Stereolithography of Spatially Controlled Multi-Material Bioactive Poly (Ethylene Glycol) Scaffolds
,”
Acta Biomater.
,
6
(
3
), pp.
1047
1054
.
60.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
61.
Hockaday
,
L.
,
Kang
,
K.
,
Colangelo
,
N.
,
Cheung
,
P.
,
Duan
,
B.
,
Malone
,
E.
,
Wu
,
J.
,
Girardi
,
L.
,
Bonassar
,
L.
, and
Lipson
,
H.
,
2012
, “
Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds
,”
Biofabrication
,
4
(
3
), p.
035005
.
62.
Mannoor
,
M. S.
,
Jiang
,
Z.
,
James
,
T.
,
Kong
,
Y. L.
,
Malatesta
,
K. A.
,
Soboyejo
,
W. O.
,
Verma
,
N.
,
Gracias
,
D. H.
, and
McAlpine
,
M. C.
,
2013
, “
3D Printed Bionic Ears
,”
Nano Lett.
,
13
(
6
), pp.
2634
2639
.
63.
Xu
,
T.
,
Zhao
,
W.
,
Zhu
,
J.-M.
,
Albanna
,
M. Z.
,
Yoo
,
J. J.
, and
Atala
,
A.
,
2013
, “
Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology
,”
Biomaterials
,
34
(
1
), pp.
130
139
.
64.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
65.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
, p. 8643.
66.
Le Ferrand
,
H.
,
Bouville
,
F.
,
Niebel
,
T. P.
, and
Studart
,
A. R.
,
2015
, “
Magnetically Assisted Slip Casting of Bioinspired Heterogeneous Composites
,”
Nat. Mater.
,
14
(
11
), pp.
1172
1179
.
67.
Regenfuss
,
P.
,
Streek
,
A.
,
Hartwig
,
L.
,
Klötzer
,
S.
,
Brabant
,
T.
,
Horn
,
M.
,
Ebert
,
R.
, and
Exner
,
H.
,
2007
, “
Principles of Laser Micro Sintering
,”
Rapid Prototyping J.
,
13
(
4
), pp.
204
212
.
68.
Goyanes
,
A.
,
Buanz
,
A. B.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2014
, “
Fused-Filament 3D Printing (3DP) for Fabrication of Tablets
,”
Int. J. Pharm.
,
476
(
1
), pp.
88
92
.
69.
Zein
,
I.
,
Hutmacher
,
D. W.
,
Tan
,
K. C.
, and
Teoh
,
S. H.
,
2002
, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
,
23
(
4
), pp.
1169
1185
.
70.
Nowicki
,
M. A.
,
Castro
,
N. J.
,
Plesniak
,
M. W.
, and
Zhang
,
L. G.
,
2015
, “
3D Printing of Novel Gradient Osteochondral Scaffolds to Bridge the Gap Between Cartilage and Bone
,”
ASME
Paper No. IMECE2015-51153.
71.
Selimis
,
A.
,
Mironov
,
V.
, and
Farsari
,
M.
,
2015
, “
Direct Laser Writing: Principles and Materials for Scaffold 3D Printing
,”
Microelectron. Eng.
,
132
, pp.
83
89
.
72.
Krebs
,
F. C.
,
2009
, “
Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques
,”
Sol. Energy Mater. Sol. Cells
,
93
(
4
), pp.
394
412
.
73.
Li
,
M.
,
Li
,
Y.-T.
,
Li
,
D.-W.
, and
Long
,
Y.-T.
,
2012
, “
Recent Developments and Applications of Screen-Printed Electrodes in Environmental Assays—A Review
,”
Anal. Chim. Acta
,
734
, pp.
31
44
.
74.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
.
75.
Yoon
,
J.
,
Lee
,
S. M.
,
Kang
,
D.
,
Meitl
,
M. A.
,
Bower
,
C. A.
, and
Rogers
,
J.
,
2015
, “
Heterogeneously Integrated Optoelectronic Devices Enabled by Micro-Transfer Printing
,”
Adv. Opt. Mater.
,
3
(
10
), pp.
1313
1335
.
76.
Xu
,
W.
,
Luikart
,
A. M.
,
Sims
,
C. E.
, and
Allbritton
,
N. L.
,
2010
, “
Contact Printing of Arrayed Microstructures
,”
Anal. Bioanal. Chem.
,
397
(
8
), pp.
3377
3385
.
77.
He
,
J.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2015
, “
Inorganic Materials and Assembly Techniques for Flexible and Stretchable Electronics
,”
Proc. IEEE
,
103
(
4
), pp.
619
632
.
78.
Meitl
,
M. A.
,
Zhu
,
Z. T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2006
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
.
79.
Maugis
,
D.
, and
Barquins
,
M.
,
1980
, “
Fracture Mechanics and Adherence of Viscoelastic Solids
,”
Adhesion and Adsorption of Polymers
,
Springer
, New York, pp.
203
277
.
80.
Feng
,
X.
,
Meitl
,
M. A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2007
, “
Competing Fracture in Kinetically Controlled Transfer Printing
,”
Langmuir
,
23
(25), pp.
12555
12560
.
81.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
82.
Jeong
,
H. E.
,
Lee
,
J.-K.
,
Kim
,
H. N.
,
Moon
,
S. H.
, and
Suh
,
K. Y.
,
2009
, “
A Nontransferring Dry Adhesive With Hierarchical Polymer Nanohairs
,”
Proc. Natl. Acad. Sci.
,
106
(
14
), pp.
5639
5644
.
83.
Kim
,
S.
,
Wu
,
J. A.
,
Carlson
,
A.
,
Jin
,
S. H.
,
Kovalsky
,
A.
,
Glass
,
P.
,
Liu
,
Z. J.
,
Ahmed
,
N.
,
Elgan
,
S. L.
,
Chen
,
W. Q.
,
Ferreira
,
P. M.
,
Sitti
,
M.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2010
, “
Microstructured Elastomeric Surfaces With Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
40
), pp.
17095
17100
.
84.
Wu
,
J.
,
Kim
,
S.
,
Chen
,
W.
,
Carlson
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Mechanics of Reversible Adhesion
,”
Soft Matter
,
7
(
18
), p.
8657
.
85.
Eisenhaure
,
J. D.
,
Xie
,
T.
,
Varghese
,
S.
, and
Kim
,
S.
,
2013
, “
Microstructured Shape Memory Polymer Surfaces With Reversible Dry Adhesion
,”
ACS Appl. Mater. Interfaces
,
5
(
16
), pp.
7714
7717
.
86.
Carlson
,
A.
,
Wang
,
S. D.
,
Elvikis
,
P.
,
Ferreira
,
P. M.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Active, Programmable Elastomeric Surfaces With Tunable Adhesion for Deterministic Assembly by Transfer Printing
,”
Adv. Funct. Mater.
,
22
(
21
), pp.
4476
4484
.
87.
Song
,
S.
, and
Sitti
,
M.
,
2014
, “
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing
,”
Adv. Mater.
,
26
(
28
), pp.
4901
4906
.
88.
Ahmed
,
N.
,
Dagdeviren
,
C.
,
Rogers
,
J. A.
, and
Ferreira
,
P. M.
,
2015
, “
Active Polymeric Composite Membranes for Localized Actuation and Sensing in Microtransfer Printing
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1016
1028
.
89.
Murphy
,
M. P.
,
Aksak
,
B.
, and
Sitti
,
M.
,
2009
, “
Gecko-Inspired Directional and Controllable Adhesion
,”
Small
,
5
(
2
), pp.
170
175
.
90.
Carlson
,
A.
,
Kim-Lee
,
H. J.
,
Wu
,
J.
,
Elvikis
,
P.
,
Cheng
,
H. Y.
,
Kovalsky
,
A.
,
Elgan
,
S.
,
Yu
,
Q. M.
,
Ferreira
,
P. M.
,
Huang
,
Y. G.
,
Turner
,
K. T.
, and
Rogers
,
J. A.
,
2011
, “
Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly
,”
Appl. Phys. Lett.
,
98
(
26
), p.
264104
.
91.
Cheng
,
H. Y.
,
Wu
,
J.
,
Yu
,
Q. M.
,
Kim-Lee
,
H. J.
,
Carlson
,
A.
,
Turner
,
K. T.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing
,”
Mech. Res. Commun.
,
43
, pp.
46
49
.
92.
Jeong
,
J.
,
Kim
,
J.
,
Song
,
K.
,
Autumn
,
K.
, and
Lee
,
J.
,
2014
, “
Geckoprinting: Assembly of Microelectronic Devices on Unconventional Surfaces by Transfer Printing With Isolated Gecko Setal Arrays
,”
J. R. Soc. Interface
,
11
(
99
), p.
20140627
.
93.
Yang
,
S. Y.
,
Carlson
,
A.
,
Cheng
,
H.
,
Yu
,
Q.
,
Ahmed
,
N.
,
Wu
,
J.
,
Kim
,
S.
,
Sitti
,
M.
,
Ferreira
,
P. M.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Elastomer Surfaces With Directionally Dependent Adhesion Strength and Their Use in Transfer Printing With Continuous Roll-to-Roll Applications
,”
Adv. Mater.
,
24
(
16
), pp.
2117
2122
.
94.
Lee
,
H.
,
Um
,
D. S.
,
Lee
,
Y.
,
Lim
,
S.
,
Kim
,
H. J.
, and
Ko
,
H.
,
2016
, “
Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes
,”
Adv. Mater.
,
28
(
34
), pp.
7457
7465
.
95.
Sariola
,
V.
, and
Sitti
,
M.
,
2014
, “
Mechanically Switchable Elastomeric Microfibrillar Adhesive Surfaces for Transfer Printing
,”
Adv. Mater. Interfaces
,
1
(
4
), p. 1300159.
96.
Lee
,
C. H.
,
Kim
,
D. R.
,
Cho
,
I. S.
,
William
,
N.
,
Wang
,
Q.
, and
Zheng
,
X.
,
2012
, “
Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates
,”
Sci. Rep.
,
2
, p. 1000.
97.
Lee
,
C. H.
,
Kim
,
J.-H.
,
Zou
,
C.
,
Cho
,
I. S.
,
Weisse
,
J. M.
,
Nemeth
,
W.
,
Wang
,
Q.
,
Van Duin
,
A. C.
,
Kim
,
T.-S.
, and
Zheng
,
X.
,
2013
, “
Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-Film Electronics
,”
Sci. Rep.
,
3
, p. 2917.
98.
Kim
,
S.
,
Carlson
,
A.
,
Cheng
,
H. Y.
,
Lee
,
S.
,
Park
,
J. K.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Enhanced Adhesion With Pedestal-Shaped Elastomeric Stamps for Transfer Printing
,”
Appl. Phys. Lett.
,
100
(
17
), p.
171909
.
99.
Saeidpourazar
,
R.
,
Li
,
R.
,
Li
,
Y. H.
,
Sangid
,
M. D.
,
Lu
,
C. F.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Ferreira
,
P. M.
,
2012
, “
Laser-Driven Non-Contact Transfer Printing of Prefabricated Microstructures
,”
J. Microelectromech. Syst.
,
21
(
5
), pp.
1049
1058
.
100.
Li
,
R.
,
Li
,
Y.
,
,
C.
,
Song
,
J.
,
Saeidpourazar
,
R.
,
Fang
,
B.
,
Zhong
,
Y.
,
Ferreira
,
P. M.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2012
, “
Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis
,”
Soft Matter
,
8
(27), pp.
3122
3127
.
101.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
102.
Kang
,
S. J.
,
Kim
,
B.
,
Kim
,
K. S.
,
Zhao
,
Y.
,
Chen
,
Z.
,
Lee
,
G. H.
,
Hone
,
J.
,
Kim
,
P.
, and
Nuckolls
,
C.
,
2011
, “
Inking Elastomeric Stamps With Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs
,”
Adv. Mater.
,
23
(
31
), pp.
3531
3535
.
103.
Song
,
J.
,
Kam
,
F.-Y.
,
Png
,
R.-Q.
,
Seah
,
W.-L.
,
Zhuo
,
J.-M.
,
Lim
,
G.-K.
,
Ho
,
P. K.
, and
Chua
,
L.-L.
,
2013
, “
A General Method for Transferring Graphene Onto Soft Surfaces
,”
Nat. Nanotechnol.
,
8
(
5
), pp.
356
362
.
104.
Suk
,
J. W.
,
Kitt
,
A.
,
Magnuson
,
C. W.
,
Hao
,
Y.
,
Ahmed
,
S.
,
An
,
J.
,
Swan
,
A. K.
,
Goldberg
,
B. B.
, and
Ruoff
,
R. S.
,
2011
, “
Transfer of CVD-Grown Monolayer Graphene Onto Arbitrary Substrates
,”
ACS Nano
,
5
(
9
), pp.
6916
6924
.
105.
Winters
,
S.
,
Hallam
,
T.
,
Nolan
,
H.
, and
Duesberg
,
G. S.
,
2012
, “
Production of 3D-Shaped Graphene Via Transfer Printing
,”
Phys. Status Solidi B
,
249
(
12
), pp.
2515
2518
.
106.
Castellanos-Gomez
,
A.
,
Roldán
,
R.
,
Cappelluti
,
E.
,
Buscema
,
M.
,
Guinea
,
F.
,
van der Zant
,
H. S.
, and
Steele
,
G. A.
,
2013
, “
Local Strain Engineering in Atomically Thin MoS2
,”
Nano Lett.
,
13
(
11
), pp.
5361
5366
.
107.
Schaller
,
R. R.
,
1997
, “
Moore's Law: Past, Present and Future
,”
IEEE Spectrum
,
34
(
6
), pp.
52
59
.
108.
Ko
,
H.
,
Takei
,
K.
,
Kapadia
,
R.
,
Chuang
,
S.
,
Fang
,
H.
,
Leu
,
P. W.
,
Ganapathi
,
K.
,
Plis
,
E.
,
Kim
,
H. S.
, and
Chen
,
S.-Y.
,
2010
, “
Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors
,”
Nature
,
468
(
7321
), pp.
286
289
.
109.
Takei
,
K.
,
Fang
,
H.
,
Kumar
,
S. B.
,
Kapadia
,
R.
,
Gao
,
Q.
,
Madsen
,
M.
,
Kim
,
H. S.
,
Liu
,
C.-H.
,
Chueh
,
Y.-L.
, and
Plis
,
E.
,
2011
, “
Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes
,”
Nano Lett.
,
11
(
11
), pp.
5008
5012
.
110.
Fang
,
H.
,
Chuang
,
S.
,
Chang
,
T. C.
,
Takei
,
K.
,
Takahashi
,
T.
, and
Javey
,
A.
,
2012
, “
High-Performance Single Layered WSe2 p-FETs With Chemically Doped Contacts
,”
Nano Lett.
,
12
(
7
), pp.
3788
3792
.
111.
Fang
,
H.
,
Tosun
,
M.
,
Seol
,
G.
,
Chang
,
T. C.
,
Takei
,
K.
,
Guo
,
J.
, and
Javey
,
A.
,
2013
, “
Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium
,”
Nano Lett.
,
13
(
5
), pp.
1991
1995
.
112.
Fang
,
H.
,
Madsen
,
M.
,
Carraro
,
C.
,
Takei
,
K.
,
Kim
,
H. S.
,
Plis
,
E.
,
Chen
,
S.-Y.
,
Krishna
,
S.
,
Chueh
,
Y.-L.
, and
Maboudian
,
R.
,
2011
, “
Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator
,”
Appl. Phys. Lett.
,
98
(
1
), p.
012111
.
113.
Nah
,
J.
,
Fang
,
H.
,
Wang
,
C.
,
Takei
,
K.
,
Lee
,
M. H.
,
Plis
,
E.
,
Krishna
,
S.
, and
Javey
,
A.
,
2012
, “
III–V Complementary Metal–Oxide–Semiconductor Electronics on Silicon Substrates
,”
Nano Lett.
,
12
(
7
), pp.
3592
3595
.
114.
Lee
,
G.-H.
,
Yu
,
Y.-J.
,
Cui
,
X.
,
Petrone
,
N.
,
Lee
,
C.-H.
,
Choi
,
M. S.
,
Lee
,
D.-Y.
,
Lee
,
C.
,
Yoo
,
W. J.
, and
Watanabe
,
K.
,
2013
, “
Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures
,”
ACS Nano
,
7
(
9
), pp.
7931
7936
.
115.
Cui
,
X.
,
Lee
,
G.-H.
,
Kim
,
Y. D.
,
Arefe
,
G.
,
Huang
,
P. Y.
,
Lee
,
C.-H.
,
Chenet
,
D. A.
,
Zhang
,
X.
,
Wang
,
L.
, and
Ye
,
F.
,
2015
, “
Multi-Terminal Transport Measurements of MoS2 Using a van der Waals Heterostructure Device Platform
,”
Nat. Nanotechnol.
,
10
(
6
), pp.
534
540
.
116.
Oh
,
J. Y.
,
Lee
,
J. H.
,
Han
,
S. W.
,
Chae
,
S. S.
,
Bae
,
E. J.
,
Kang
,
Y. H.
,
Choi
,
W. J.
,
Cho
,
S. Y.
,
Lee
,
J.-O.
, and
Baik
,
H. K.
,
2016
, “
Chemically Exfoliated Transition Metal Dichalcogenide Nanosheet-Based Wearable Thermoelectric Generators
,”
Energy Environ. Sci.
,
9
(
5
), pp.
1696
1705
.
117.
Tien
,
D. H.
,
Park
,
J.-Y.
,
Kim
,
K. B.
,
Lee
,
N.
,
Choi
,
T.
,
Kim
,
P.
,
Taniguchi
,
T.
,
Watanabe
,
K.
, and
Seo
,
Y.
,
2016
, “
Study of Graphene-Based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process
,”
ACS Appl. Mater. Interfaces
,
8
(
5
), pp.
3072
3078
.
118.
Khademhosseini
,
A.
,
Langer
,
R.
,
Borenstein
,
J.
, and
Vacanti
,
J. P.
,
2006
, “
Microscale Technologies for Tissue Engineering and Biology
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
8
), pp.
2480
2487
.
119.
Yarmush
,
M. L.
, and
King
,
K. R.
,
2009
, “
Living-Cell Microarrays
,”
Annu. Rev. Biomed. Eng.
,
11
(1), p.
235
.
120.
Fernandes
,
T. G.
,
Diogo
,
M. M.
,
Clark
,
D. S.
,
Dordick
,
J. S.
, and
Cabral
,
J. M.
,
2009
, “
High-Throughput Cellular Microarray Platforms: Applications in Drug Discovery, Toxicology and Stem Cell Research
,”
Trends Biotechnol.
,
27
(
6
), pp.
342
349
.
121.
Paguirigan
,
A. L.
, and
Beebe
,
D. J.
,
2008
, “
Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays
,”
BioEssays
,
30
(
9
), pp.
811
821
.
122.
Gomez
,
F. A.
,
2008
,
Biological Applications of Microfluidics
,
Wiley
, Hoboken, NJ.
123.
Sims
,
C. E.
, and
Allbritton
,
N. L.
,
2007
, “
Analysis of Single Mammalian Cells On-Chip
,”
Lab Chip
,
7
(
4
), pp.
423
440
.
124.
An
,
D.
,
Ji
,
Y.
,
Chiu
,
A.
,
Lu
,
Y.-C.
,
Song
,
W.
,
Zhai
,
L.
,
Qi
,
L.
,
Luo
,
D.
, and
Ma
,
M.
,
2015
, “
Developing Robust, Hydrogel-Based, Nanofiber-Enabled Encapsulation Devices (NEEDs) for Cell Therapies
,”
Biomaterials
,
37
, pp.
40
48
.
125.
Chien
,
H.-W.
, and
Tsai
,
W.-B.
,
2012
, “
Fabrication of Tunable Micropatterned Substrates for Cell Patterning Via Microcontact Printing of Polydopamine With Poly (Ethylene Imine)-Grafted Copolymers
,”
Acta Biomater.
,
8
(
10
), pp.
3678
3686
.
126.
Jun
,
I.
,
Kim
,
S. J.
,
Lee
,
J. H.
,
Lee
,
Y. J.
,
Shin
,
Y. M.
,
Choi
,
E.
,
Park
,
K. M.
,
Park
,
J.
,
Park
,
K. D.
, and
Shin
,
H.
,
2012
, “
Transfer Printing of Cell Layers With an Anisotropic Extracellular Matrix Assembly Using Cell-Interactive and Thermosensitive Hydrogels
,”
Adv. Funct. Mater.
,
22
(
19
), pp.
4060
4069
.
127.
Kaufmann
,
T.
, and
Ravoo
,
B. J.
,
2010
, “
Stamps, Inks and Substrates: Polymers in Microcontact Printing
,”
Polym. Chem.
,
1
(
4
), pp.
371
387
.
128.
Broderick
,
A. H.
,
Azarin
,
S. M.
,
Buck
,
M. E.
,
Palecek
,
S. P.
, and
Lynn
,
D. M.
,
2011
, “
Fabrication and Selective Functionalization of Amine-Reactive Polymer Multilayers on Topographically Patterned Microwell Cell Culture Arrays
,”
Biomacromolecules
,
12
(
6
), pp.
1998
2007
.
129.
Park
,
J.
,
Müller
,
M.
,
Kim
,
J.
, and
Seidel
,
H.
,
2015
, “
Fabrication of a Cell-Adhesive Microwell Array for 3-Dimensional In Vitro Cell Model
,”
Biomed. Eng. Lett.
,
5
(
2
), pp.
140
146
.
130.
Lee
,
J.
,
Park
,
J.
,
Lee
,
J. Y.
, and
Yeo
,
J. S.
,
2015
, “
Contact Transfer Printing of Side Edge Prefunctionalized Nanoplasmonic Arrays for Flexible MicroRNA Biosensor
,”
Adv. Sci.
,
2
(
9
), p. 1500121.
131.
Kim
,
D. W.
,
Jun
,
I.
,
Lee
,
T.-J.
,
hye Lee
,
J.
,
Lee
,
Y. J.
,
Jang
,
H.-K.
,
Kang
,
S.
,
Park
,
K. D.
,
Cho
,
S.-W.
, and
Kim
,
B.-S.
,
2013
, “
Therapeutic Angiogenesis by a Myoblast Layer Harvested by Tissue Transfer Printing From Cell-Adhesive, Thermosensitive Hydrogels
,”
Biomaterials
,
34
(
33
), pp.
8258
8268
.
132.
Kim
,
S. J.
,
Cho
,
H. R.
,
Cho
,
K. W.
,
Qiao
,
S.
,
Rhim
,
J. S.
,
Soh
,
M.
,
Kim
,
T.
,
Choi
,
M. K.
,
Choi
,
C.
, and
Park
,
I.
,
2015
, “
Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy
,”
ACS Nano
,
9
(
3
), pp.
2677
2688
.
133.
Webb
,
R. C.
,
Bonifas
,
A. P.
,
Behnaz
,
A.
,
Zhang
,
Y.
,
Yu
,
K. J.
,
Cheng
,
H.
,
Shi
,
M.
,
Bian
,
Z.
,
Liu
,
Z.
,
Kim
,
Y. S.
,
Yeo
,
W. H.
,
Park
,
J. S.
,
Song
,
J.
,
Li
,
Y.
,
Huang
,
Y.
,
Gorbach
,
A. M.
, and
Rogers
,
J. A.
,
2013
, “
Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin
,”
Nat. Mater.
,
12
(
10
), pp.
938
944
.
134.
Huang
,
X.
,
Liu
,
Y.
,
Cheng
,
H.
,
Shin
,
W. J.
,
Fan
,
J. A.
,
Liu
,
Z.
,
Lu
,
C. J.
,
Kong
,
G. W.
,
Chen
,
K.
,
Patnaik
,
D.
,
Lee
,
S. H.
,
Hage-Ali
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain
,”
Adv. Funct. Mater.
,
24
(
25
), pp.
3846
3854
.
135.
Huang
,
X.
,
Cheng
,
H.
,
Chen
,
K.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Zhu
,
C.
,
Ouyang
,
S. C.
,
Kong
,
G. W.
,
Yu
,
C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Epidermal Impedance Sensing Sheets for Precision Hydration Assessment and Spatial Mapping
,”
IEEE Trans. Biomed. Eng.
,
60
(
10
), pp.
2848
2857
.
136.
Cheng
,
H.
,
Zhang
,
Y.
,
Huang
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Analysis of a Concentric Coplanar Capacitor for Epidermal Hydration Sensing
,”
Sens. Actuators, A
,
203
, pp.
149
153
.
137.
Jeong
,
J. W.
,
Kim
,
M. K.
,
Cheng
,
H.
,
Yeo
,
W. H.
,
Huang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Capacitive Epidermal Electronics for Electrically Safe, Long-Term Electrophysiological Measurements
,”
Adv. Healthcare Mater.
,
3
(
5
), pp.
642
648
.
138.
Norton
,
J. J.
,
Lee
,
D. S.
,
Lee
,
J. W.
,
Lee
,
W.
,
Kwon
,
O.
,
Won
,
P.
,
Jung
,
S.-Y.
,
Cheng
,
H.
,
Jeong
,
J.-W.
,
Akce
,
A.
,
Umunna
,
S.
,
Na
,
I.
,
Kwon
,
Y. H.
,
Wang
,
X.-Q.
,
Liu
,
Z.
,
Paik
,
U.
,
Huang
,
Y.
,
Bretl
,
T.
,
Yeo
,
W.-H.
, and
Rogers
,
J. A.
,
2015
, “
Soft, Curved Electrode Systems Capable of Integration on the Auricle as a Persistent Brain–Computer Interface
,”
Proc. Natl. Acad. Sci.
,
112
(
13
), pp.
3920
3925
.
139.
Jeong
,
J. W.
,
Yeo
,
W. H.
,
Akhtar
,
A.
,
Norton
,
J. J.
,
Kwack
,
Y. J.
,
Li
,
S.
,
Jung
,
S. Y.
,
Su
,
Y.
,
Lee
,
W.
,
Xia
,
J.
,
Cheng
,
H.
,
Huang
,
Y.
,
Choi
,
W. S.
,
Bretl
,
T.
, and
Rogers
,
J. A.
,
2013
, “
Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics
,”
Adv. Mater.
,
25
(
47
), pp.
6839
6846
.
140.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
141.
Hattori
,
Y.
,
Falgout
,
L.
,
Lee
,
W.
,
Jung
,
S. Y.
,
Poon
,
E.
,
Lee
,
J. W.
,
Na
,
I.
,
Geisler
,
A.
,
Sadhwani
,
D.
,
Zhang
,
Y.
,
Su
,
Y.
,
Wang
,
X.
,
Liu
,
Z.
,
Xia
,
J.
,
Cheng
,
H.
,
Webb
,
R. C.
,
Bonifas
,
A. P.
,
Won
,
P.
,
Jeong
,
J. W.
,
Jang
,
K. I.
,
Song
,
Y. M.
,
Nardone
,
B.
,
Nodzenski
,
M.
,
Fan
,
J. A.
,
Huang
,
Y.
,
West
,
D. P.
,
Paller
,
A. S.
,
Alam
,
M.
,
Yeo
,
W. H.
, and
Rogers
,
J. A.
,
2014
, “
Multifunctional Skin-Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing
,”
Adv. Healthcare Mater.
,
3
(
10
), pp.
1597
1607
.
142.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Lu
,
N.
, and
Rogers
,
J. A.
,
2012
, “
Flexible and Stretchable Electronics for Biointegrated Devices
,”
Annu. Rev. Biomed. Eng.
,
14
(1), pp.
113
128
.
143.
Cheng
,
H.
, and
Yi
,
N.
,
2017
, “
Dissolvable Tattoo Sensors: From Science Fiction to a Viable Technology
,”
Phys. Scr.
,
92
(
1
), p.
013001
.
144.
Kim
,
D.-H.
,
Lu
,
N.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices
,”
MRS Bull.
,
37
(
3
), pp.
226
235
.
145.
Zhu
,
J.
,
Dexheimer
,
M.
, and
Cheng
,
H.
,
2017
, “
Reconfigurable Systems for Multifunctional Electronics
,” npj Flexible Electronics (accepted).
146.
Rogers
,
J.
,
Lagally
,
M.
, and
Nuzzo
,
R.
,
2011
, “
Synthesis, Assembly and Applications of Semiconductor Nanomembranes
,”
Nature
,
477
(
7362
), pp.
45
53
.
147.
Dagdeviren
,
C.
,
Shi
,
Y.
,
Joe
,
P.
,
Ghaffari
,
R.
,
Balooch
,
G.
,
Usgaonkar
,
K.
,
Gur
,
O.
,
Tran
,
P. L.
,
Crosby
,
J. R.
, and
Meyer
,
M.
,
2015
, “
Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics
,”
Nat. Mater.
,
14
(
7
), pp.
728
736
.
148.
Windmiller
,
J. R.
,
Bandodkar
,
A. J.
,
Valdés-Ramírez
,
G.
,
Parkhomovsky
,
S.
,
Martinez
,
A. G.
, and
Wang
,
J.
,
2012
, “
Electrochemical Sensing Based on Printable Temporary Transfer Tattoos
,”
Chem. Commun.
,
48
(
54
), pp.
6794
6796
.
149.
Xu
,
L.
,
Gutbrod
,
S. R.
,
Bonifas
,
A. P.
,
Su
,
Y.
,
Sulkin
,
M. S.
,
Lu
,
N.
,
Chung
,
H. J.
,
Jang
,
K. I.
,
Liu
,
Z.
,
Ying
,
M.
,
Lu
,
C.
,
Webb
,
R. C.
,
Kim
,
J. S.
,
Laughner
,
J. I.
,
Cheng
,
H.
,
Liu
,
Y.
,
Ameen
,
A.
,
Jeong
,
J. W.
,
Kim
,
G. T.
,
Huang
,
Y.
,
Efimov
,
I. R.
, and
Rogers
,
J. A.
,
2014
, “
3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium
,”
Nat. Commun.
,
5
, p.
3329
.
150.
Wang
,
S. D.
,
Xiao
,
J. L.
,
Song
,
J. Z.
,
Ko
,
H. C.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2010
, “
Mechanics of Curvilinear Electronics
,”
Soft Matter
,
6
(
22
), pp.
5757
5763
.
151.
Ko
,
H. C.
,
Shin
,
G.
,
Wang
,
S. D.
,
Stoykovich
,
M. P.
,
Lee
,
J. W.
,
Kim
,
D. H.
,
Ha
,
J. S.
,
Huang
,
Y. G.
,
Hwang
,
K. C.
, and
Rogers
,
J. A.
,
2009
, “
Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements
,”
Small
,
5
(
23
), pp.
2703
2709
.
152.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J. Z.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C. J.
,
Geddes
,
J. B.
,
Xiao
,
J. L.
,
Wang
,
S. D.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
.
153.
Hwang
,
S. W.
,
Park
,
G.
,
Cheng
,
H.
,
Song
,
J. K.
,
Kang
,
S. K.
,
Yin
,
L.
,
Kim
,
J. H.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Lee
,
K. M.
, and
Rogers
,
J. A.
,
2014
, “
25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices
,”
Adv. Mater.
,
26
(
13
), pp.
1992
2000
.
154.
Fu
,
K. K.
,
Wang
,
Z. Y.
,
Dai
,
J. Q.
,
Carter
,
M.
, and
Hu
,
L. B.
,
2016
, “
Transient Electronics: Materials and Devices
,”
Chem. Mater.
,
28
(
11
), pp.
3527
3539
.
155.
Cheng
,
H.
,
2016
, “
Inorganic Dissolvable Electronics: Materials and Devices for Biomedicine and Environment
,”
J. Mater. Res.
,
31
(
17
), pp.
2549
2570
.
156.
Cheng
,
H.
, and
Vepachedu
,
V.
,
2016
, “
Recent Development of Transient Electronics
,”
Theor. Appl. Mech. Lett.
,
6
(
1
), pp.
21
31
.
157.
Kang
,
S. K.
,
Murphy
,
R. K.
,
Hwang
,
S. W.
,
Lee
,
S. M.
,
Harburg
,
D. V.
,
Krueger
,
N. A.
,
Shin
,
J.
,
Gamble
,
P.
,
Cheng
,
H.
,
Yu
,
S.
,
Liu
,
Z.
,
McCall
,
J. G.
,
Stephen
,
M.
,
Ying
,
H.
,
Kim
,
J.
,
Park
,
G.
,
Webb
,
R. C.
,
Lee
,
C. H.
,
Chung
,
S.
,
Wie
,
D. S.
,
Gujar
,
A. D.
,
Vemulapalli
,
B.
,
Kim
,
A. H.
,
Lee
,
K. M.
,
Cheng
,
J.
,
Huang
,
Y.
,
Lee
,
S. H.
,
Braun
,
P. V.
,
Ray
,
W. Z.
, and
Rogers
,
J. A.
,
2016
, “
Bioresorbable Silicon Electronic Sensors for the Brain
,”
Nature
,
530
(
7588
), pp.
71
76
.
158.
Yu
,
K. J.
,
Kuzum
,
D.
,
Hwang
,
S. W.
,
Kim
,
B. H.
,
Juul
,
H.
,
Kim
,
N. H.
,
Won
,
S. M.
,
Chiang
,
K.
,
Trumpis
,
M.
,
Richardson
,
A. G.
,
Cheng
,
H.
,
Fang
,
H.
,
Thompson
,
M.
,
Bink
,
H.
,
Talos
,
D.
,
Seo
,
K. J.
,
Lee
,
H. N.
,
Kang
,
S. K.
,
Kim
,
J. H.
,
Lee
,
J. Y.
,
Huang
,
Y.
,
Jensen
,
F. E.
,
Dichter
,
M. A.
,
Lucas
,
T. H.
,
Viventi
,
J.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2016
, “
Bioresorbable Silicon Electronics for Transient Spatiotemporal Mapping of Electrical Activity From the Cerebral Cortex
,”
Nat. Mater.
,
15
(
7
), pp.
782
791
.
159.
Hwang
,
S. W.
,
Tao
,
H.
,
Kim
,
D. H.
,
Cheng
,
H.
,
Song
,
J. K.
,
Rill
,
E.
,
Brenckle
,
M. A.
,
Panilaitis
,
B.
,
Won
,
S. M.
,
Kim
,
Y. S.
,
Song
,
Y. M.
,
Yu
,
K. J.
,
Ameen
,
A.
,
Li
,
R.
,
Su
,
Y.
,
Yang
,
M.
,
Kaplan
,
D. L.
,
Zakin
,
M. R.
,
Slepian
,
M. J.
,
Huang
,
Y.
,
Omenetto
,
F. G.
, and
Rogers
,
J. A.
,
2012
, “
A Physically Transient Form of Silicon Electronics
,”
Science
,
337
(
6102
), pp.
1640
1644
.
160.
Yin
,
L.
,
Cheng
,
H. Y.
,
Mao
,
S. M.
,
Haasch
,
R.
,
Liu
,
Y. H.
,
Xie
,
X.
,
Hwang
,
S. W.
,
Jain
,
H.
,
Kang
,
S. K.
,
Su
,
Y. W.
,
Li
,
R.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Dissolvable Metals for Transient Electronics
,”
Adv. Funct. Mater.
,
24
(
5
), pp.
645
658
.
161.
Hwang
,
S. W.
,
Song
,
J. K.
,
Huang
,
X.
,
Cheng
,
H.
,
Kang
,
S. K.
,
Kim
,
B. H.
,
Kim
,
J. H.
,
Yu
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers
,”
Adv. Mater.
,
26
(
23
), pp.
3905
3911
.
162.
Kang
,
S. K.
,
Park
,
G.
,
Kim
,
K.
,
Hwang
,
S. W.
,
Cheng
,
H. Y.
,
Shin
,
J. H.
,
Chung
,
S. J.
,
Kim
,
M.
,
Yin
,
L.
,
Lee
,
J. C.
,
Lee
,
K. M.
, and
Rogers
,
J. A.
,
2015
, “
Dissolution Chemistry and Biocompatibility of Silicon- and Germanium-Based Semiconductors for Transient Electronics
,”
ACS Appl. Mater. Interfaces
,
7
(
17
), pp.
9297
9305
.
163.
Bettinger
,
C. J.
, and
Bao
,
Z.
,
2010
, “
Organic Thin-Film Transistors Fabricated on Resorbable Biomaterial Substrates
,”
Adv. Mater.
,
22
(
5
), pp.
651
655
.
164.
Irimia-Vladu
,
M.
,
Głowacki
,
E. D.
,
Troshin
,
P. A.
,
Schwabegger
,
G.
,
Leonat
,
L.
,
Susarova
,
D. K.
,
Krystal
,
O.
,
Ullah
,
M.
,
Kanbur
,
Y.
, and
Bodea
,
M. A.
,
2012
, “
Indigo-A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits
,”
Adv. Mater.
,
24
(
3
), pp.
375
380
.
165.
Zhong
,
C.
,
Deng
,
Y.
,
Roudsari
,
A. F.
,
Kapetanovic
,
A.
,
Anantram
,
M. P.
, and
Rolandi
,
M.
,
2011
, “
A Polysaccharide Bioprotonic Field-Effect Transistor
,”
Nat. Commun.
,
2
, p.
476
.
166.
Middleton
,
J. C.
, and
Tipton
,
A. J.
,
2000
, “
Synthetic Biodegradable Polymers as Orthopedic Devices
,”
Biomaterials
,
21
(
23
), pp.
2335
2346
.
167.
Omenetto
,
F. G.
, and
Kaplan
,
D. L.
,
2010
, “
New Opportunities for an Ancient Material
,”
Science
,
329
(
5991
), pp.
528
531
.
168.
Irimia-Vladu
,
M.
,
2014
, “
‘Green’ Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future
,”
Chem. Soc. Rev.
,
43
(
2
), pp.
588
610
.
169.
Kang
,
S. K.
,
Hwang
,
S. W.
,
Cheng
,
H. Y.
,
Yu
,
S.
,
Kim
,
B. H.
,
Kim
,
J. H.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics
,”
Adv. Funct. Mater.
,
24
(
28
), pp.
4427
4434
.
170.
Brenckle
,
M. A.
,
Cheng
,
H.
,
Hwang
,
S.
,
Tao
,
H.
,
Paquette
,
M.
,
Kaplan
,
D. L.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Omenetto
,
F. G.
,
2015
, “
Modulated Degradation of Transient Electronic Devices Through Multilayer Silk Fibroin Pockets
,”
ACS Appl. Mater. Interfaces
,
7
(
36
), pp.
19870
19875
.
171.
Zhang
,
H.
,
Yu
,
X.
, and
Braun
,
P. V.
,
2011
, “
Three-Dimensional Bicontinuous Ultrafast-Charge and-Discharge Bulk Battery Electrodes
,”
Nat. Nanotechnol.
,
6
(
5
), pp.
277
281
.
172.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
173.
Bishop
,
D.
,
Pardo
,
F.
,
Bolle
,
C.
,
Giles
,
R.
, and
Aksyuk
,
V.
,
2012
, “
Silicon Micro-Machines for Fun and Profit
,”
J. Low Temp. Phys.
,
169
(
5–6
), pp.
386
399
.
174.
Tian
,
B.
,
Liu
,
J.
,
Dvir
,
T.
,
Jin
,
L.
,
Tsui
,
J. H.
,
Qing
,
Q.
,
Suo
,
Z.
,
Langer
,
R.
,
Kohane
,
D. S.
, and
Lieber
,
C. M.
,
2012
, “
Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues
,”
Nat. Mater.
,
11
(
11
), pp.
986
994
.
175.
Yu
,
M.
,
Huang
,
Y.
,
Ballweg
,
J.
,
Shin
,
H.
,
Huang
,
M.
,
Savage
,
D. E.
,
Lagally
,
M. G.
,
Dent
,
E. W.
,
Blick
,
R. H.
, and
Williams
,
J. C.
,
2011
, “
Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth
,”
ACS Nano
,
5
(
4
), pp.
2447
2457
.
176.
Shenoy
,
V. B.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Thin-Film Materials: From Nanopolyhedra to Graphene Origami
,”
MRS Bull.
,
37
(
09
), pp.
847
854
.
177.
Huang
,
M.
,
Cavallo
,
F.
,
Liu
,
F.
, and
Lagally
,
M. G.
,
2011
, “
Nanomechanical Architecture of Semiconductor Nanomembranes
,”
Nanoscale
,
3
(
1
), pp.
96
120
.
178.
Jang
,
J. H.
,
Ullal
,
C. K.
,
Maldovan
,
M.
,
Gorishnyy
,
T.
,
Kooi
,
S.
,
Koh
,
C.
, and
Thomas
,
E. L.
,
2007
, “
3D Micro-and Nanostructures Via Interference Lithography
,”
Adv. Funct. Mater.
,
17
(
16
), pp.
3027
3041
.
179.
Zheng
,
W.
, and
Jacobs
,
H. O.
,
2005
, “
Fabrication of Multicomponent Microsystems by Directed Three-Dimensional Self-Assembly
,”
Adv. Funct. Mater.
,
15
(
5
), pp.
732
738
.
180.
Noorduin
,
W. L.
,
Grinthal
,
A.
,
Mahadevan
,
L.
, and
Aizenberg
,
J.
,
2013
, “
Rationally Designed Complex, Hierarchical Microarchitectures
,”
Science
,
340
(
6134
), pp.
832
837
.
181.
Jeong
,
J.-W.
,
McCall
,
J. G.
,
Shin
,
G.
,
Zhang
,
Y.
,
Al-Hasani
,
R.
,
Kim
,
M.
,
Li
,
S.
,
Sim
,
J. Y.
,
Jang
,
K.-I.
, and
Shi
,
Y.
,
2015
, “
Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics
,”
Cell
,
162
(
3
), pp.
662
674
.
182.
Keum
,
H.
,
Carlson
,
A.
,
Ning
,
H.
,
Mihi
,
A.
,
Eisenhaure
,
J. D.
,
Braun
,
P. V.
,
Rogers
,
J. A.
, and
Kim
,
S.
,
2012
, “
Silicon Micro-Masonry Using Elastomeric Stamps for Three-Dimensional Microfabrication
,”
J. Micromech. Microeng.
,
22
(
5
), p.
055018
.
183.
Keum
,
H.
,
Yang
,
Z.
,
Han
,
K.
,
Handler
,
D. E.
,
Nguyen
,
T. N.
,
Schutt-Aine
,
J.
,
Bahl
,
G.
, and
Kim
,
S.
,
2016
, “
Microassembly of Heterogeneous Materials Using Transfer Printing and Thermal Processing
,”
Sci. Rep.
,
6
, p. 29925.
184.
Zhang
,
Y.
,
Keum
,
H.
,
Park
,
K.
,
Bashir
,
R.
, and
Kim
,
S.
,
2014
, “
Micro-Masonry of MEMS Sensors and Actuators
,”
J. Microelectromech. Syst.
,
23
(
2
), pp.
308
314
.
185.
Yang
,
Z.
,
Jeong
,
B.
,
Vakakis
,
A.
, and
Kim
,
S.
,
2015
, “
A Tip-Tilt-Piston Micromirror With an Elastomeric Universal Joint Fabricated Via Micromasonry
,”
J. Microelectromech. Syst.
,
24
(
2
), pp.
262
264
.
186.
Lee
,
S.
,
Kang
,
B.
,
Keum
,
H.
,
Ahmed
,
N.
,
Rogers
,
J.
,
Ferreira
,
P.
,
Kim
,
S.
, and
Min
,
B.
,
2016
, “
Heterogeneously Assembled Metamaterials and Metadevices Via 3D Modular Transfer Printing
,”
Sci. Rep.
,
6
, p.
27621
.
187.
Lee
,
J.
,
Wu
,
J.
,
Shi
,
M.
,
Yoon
,
J.
,
Park
,
S. I.
,
Li
,
M.
,
Liu
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Stretchable GaAs Photovoltaics With Designs That Enable High Areal Coverage
,”
Adv. Mater.
,
23
(
8
), pp.
986
991
.
188.
Liu
,
Z.
,
Cheng
,
H.
, and
Wu
,
J.
,
2014
, “
Mechanics of Solar Module on Structured Substrates
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
064502
.
189.
Cheng
,
H.
,
Wu
,
J.
,
Li
,
M.
,
Kim
,
D. H.
,
Kim
,
Y. S.
,
Huang
,
Y.
,
Kang
,
Z.
,
Hwang
,
K. C.
, and
Rogers
,
J. A.
,
2011
, “
An Analytical Model of Strain Isolation for Stretchable and Flexible Electronics
,”
Appl. Phys. Lett.
,
98
(
6
), p.
061902
.
190.
Park
,
S. I.
,
Xiong
,
Y. J.
,
Kim
,
R. H.
,
Elvikis
,
P.
,
Meitl
,
M.
,
Kim
,
D. H.
,
Wu
,
J.
,
Yoon
,
J.
,
Yu
,
C. J.
,
Liu
,
Z. J.
,
Huang
,
Y. G.
,
Hwang
,
K.
,
Ferreira
,
P.
,
Li
,
X. L.
,
Choquette
,
K.
, and
Rogers
,
J. A.
,
2009
, “
Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays
,”
Science
,
325
(
5943
), pp.
977
981
.
191.
Kim
,
R. H.
,
Kim
,
D. H.
,
Xiao
,
J. L.
,
Kim
,
B. H.
,
Park
,
S. I.
,
Panilaitis
,
B.
,
Ghaffari
,
R.
,
Yao
,
J. M.
,
Li
,
M.
,
Liu
,
Z. J.
,
Malyarchuk
,
V.
,
Kim
,
D. G.
,
Le
,
A. P.
,
Nuzzo
,
R. G.
,
Kaplan
,
D. L.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Kang
,
Z.
, and
Rogers
,
J. A.
,
2010
, “
Waterproof AlInGaP Optoelectronics on Stretchable Substrates With Applications in Biomedicine and Robotics
,”
Nat. Mater.
,
9
(
11
), pp.
929
937
.
192.
Kim
,
R. H.
,
Bae
,
M. H.
,
Kim
,
D. G.
,
Cheng
,
H.
,
Kim
,
B. H.
,
Kim
,
D. H.
,
Li
,
M.
,
Wu
,
J.
,
Du
,
F.
,
Kim
,
H. S.
,
Kim
,
S.
,
Estrada
,
D.
,
Hong
,
S. W.
,
Huang
,
Y.
,
Pop
,
E.
, and
Rogers
,
J.
,
2011
, “
Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates
,”
Nano Lett.
,
11
(9), pp.
3381
3886
.
193.
Jung
,
I. W.
,
Xiao
,
J. L.
,
Malyarchuk
,
V.
,
Lu
,
C. F.
,
Li
,
M.
,
Liu
,
Z. J.
,
Yoon
,
J.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2011
, “
Dynamically Tunable Hemispherical Electronic Eye Camera System With Adjustable Zoom Capability
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
5
), pp.
1788
1793
.
194.
Floreano
,
D.
,
Zufferey
,
J.-C.
,
Srinivasan
,
M. V.
, and
Ellington
,
C.
,
2010
,
Flying Insects and Robots
,
Springer-Verlag
, Berlin.
195.
Song
,
Y. M.
,
Xie
,
Y.
,
Malyarchuk
,
V.
,
Xiao
,
J.
,
Jung
,
I.
,
Choi
,
K. J.
,
Liu
,
Z.
,
Park
,
H.
,
Lu
,
C.
,
Kim
,
R. H.
,
Li
,
R.
,
Crozier
,
K. B.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Digital Cameras With Designs Inspired by the Arthropod Eye
,”
Nature
,
497
(
7447
), pp.
95
99
.
196.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
197.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
, and
Wang
,
J.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci.
,
112
(
38
), pp.
11757
11764
.
198.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
, and
Shi
,
Y.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(16), pp. 2629–2639.
199.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
, and
Xie
,
Z.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
200.
Gomez
,
D.
,
Ghosal
,
K.
,
Meitl
,
M. A.
,
Bonafede
,
S.
,
Prevatte
,
C.
,
Moore
,
T.
,
Raymond
,
B.
,
Kneeburg
,
D.
,
Fecioru
,
A.
, and
Jose
,
A.
,
2016
, “
Process Capability and Elastomer Stamp Lifetime in Micro Transfer Printing
,”
IEEE 66th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 31–June 3, pp.
680
687
.
201.
Dahiya
,
R.
,
Gottardi
,
G.
, and
Laidani
,
N.
,
2015
, “
PDMS Residues-Free Micro/Macrostructures on Flexible Substrates
,”
Microelectron. Eng.
,
136
, pp.
57
62
.
202.
Jang
,
H.-W.
, and
Kim
,
W. S.
,
2016
, “
Shear-Induced Dry Transfer of Reduced Graphene Oxide Thin Film Via Roll-to-Roll Printing
,”
Appl. Phys. Lett.
,
108
(
9
), p.
091601
.
203.
Grierson
,
D.
,
Flack
,
F.
,
Lagally
,
M.
, and
Turner
,
K.
,
2016
, “
Rolling-Based Direct-Transfer Printing: A Process for Large-Area Transfer of Micro- and Nanostructures Onto Flexible Substrates
,”
J. Appl. Phys.
,
120
(
9
), p.
093103
.
204.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
205.
Chern
,
W.
,
Hsu
,
K.
,
Chun
,
I. S.
,
Azeredo
,
B. P. D.
,
Ahmed
,
N.
,
Kim
,
K.-H.
,
Zuo
,
J.-M.
,
Fang
,
N.
,
Ferreira
,
P.
, and
Li
,
X.
,
2010
, “
Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays
,”
Nano Lett.
,
10
(
5
), pp.
1582
1588
.
206.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
De Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
.
207.
Li
,
X.
, and
Bohn
,
P.
,
2000
, “
Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon
,”
Appl. Phys. Lett.
,
77
(
16
), pp.
2572
2574
.
208.
Azeredo
,
B. P.
,
Lin
,
Y. W.
,
Avagyan
,
A.
,
Sivaguru
,
M.
,
Hsu
,
K.
, and
Ferreira
,
P.
,
2016
, “
Direct Imprinting of Porous Silicon Via Metal-Assisted Chemical Etching
,”
Adv. Funct. Mater.
,
26
(
17
), pp.
2929
2939
.
209.
Hsu
,
K. H.
,
Schultz
,
P. L.
,
Ferreira
,
P. M.
, and
Fang
,
N. X.
,
2007
, “
Electrochemical Nanoimprinting With Solid-State Superionic Stamps
,”
Nano Lett.
,
7
(
2
), pp.
446
451
.
210.
Asoh
,
H.
,
Suzuki
,
Y.
, and
Ono
,
S.
,
2015
, “
Metal-Assisted Chemical Etching of GaAs Using Au Catalyst Deposited on the Backside of a Substrate
,”
Electrochim. Acta
,
183
, pp.
8
14
.
211.
Li
,
X.
,
2012
, “
Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics
,”
Curr. Opin. Solid State Mater. Sci.
,
16
(
2
), pp.
71
81
.
You do not currently have access to this content.