Thermal interface materials (TIMs) constitute a critical component for heat dissipation in electronic packaging systems. However, the extent to which a conventional steady-state thermal characterization apparatus can resolve the interfacial thermal resistance across current high-performance interfaces (RT < 1 mm2⋅K/W) is not clear. In this work, we quantify the minimum value of RT that can be measured with this instrument. We find that in order to increase the resolution of the measurement, the thermal resistance through the instrument's reference bars must be minimized relative to RT. This is practically achieved by reducing reference bar length. However, we purport that the minimization of reference bar length is limited by the effects of thermal probe intrusion along the primary measurement pathway. Using numerical simulations, we find that the characteristics of the probes and surrounding filler material can significantly impact the measurement of temperature along each reference bar. Moreover, we find that probes must be spaced 15 diameters apart to maintain a uniform heat flux at the interface, which limits the number of thermal probes that can be used for a given reference bar length. Within practical constraints, the minimum thermal resistance that can be measured with an ideal instrument is found to be 3 mm2⋅K/W. To verify these results, the thermal resistance across an indium heat spring material with an expected thermal contact resistance of ∼1 mm2⋅K/W is experimentally measured and found to differ by more than 100% when compared to manufacturer-reported values.

References

References
1.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
2.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9
), pp.
1658
1666
.
3.
Smith
,
A. N.
,
Jankowski
,
N. R.
, and
Boteler
,
L. M.
,
2016
, “
Measurement of High-Performance Thermal Interfaces Using a Reduced Scale Steady-State Tester and Infrared Microscopy
,”
ASME J. Heat Transfer
,
138
(
4
), p.
041301
.
4.
McNamara
,
A.
,
Sahu
,
V.
,
Joshi
,
Y.
, and
Zhang
,
Z.
,
2011
, “
Infrared Imaging Microscope as an Effective Tool for Measuring Thermal Resistance of Emerging Interface Materials
,”
ASME
Paper No. AJTEC2011-44421.
5.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), p.
92
.
6.
Feng
,
X.
,
King
,
C.
,
DeVoto
,
D.
,
Mihalic
,
M.
, and
Narumanchi
,
S.
,
2014
, “
Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
1296
1307
.
7.
ASTM
,
2012
, “
Standard Test Method for Thermal Transmission of Properties of Thermally Conductive Electrical Insulation Materials
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5470-12.
8.
Park
,
J.-J.
, and
Taya
,
M.
,
2006
, “
Design of Thermal Interface Material With High Thermal Conductivity and Measurement Apparatus
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
46
52
.
9.
Huang
,
H.
,
Liu
,
C.
,
Wu
,
Y.
, and
Fan
,
S.
,
2005
, “
Aligned Carbon Nanotube Composite Films for Thermal Management
,”
Adv. Mater.
,
17
(
13
), pp.
1652
1656
.
10.
Liu
,
C.
,
Huang
,
H.
,
Wu
,
Y.
, and
Fan
,
S.
,
2004
, “
Thermal Conductivity Improvement of Silicone Elastomer With Carbon Nanotube Loading
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4248
4250
.
11.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 28–31, pp.
395
404
.
12.
Zhang
,
K.
,
Chai
,
Y.
,
Yuen
,
M.
,
Xiao
,
D.
, and
Chan
,
P.
,
2008
, “
Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling
,”
Nanotechnology
,
19
(
21
), p.
215706
.
13.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1d Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
.
14.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2016
, “
Thermal Performance of Low Melting Temperature Alloys at the Interface Between Dissimilar Materials
,”
Appl. Therm. Eng.
,
99
, pp.
72
99
.
15.
Sponagle
,
B.
, and
Groulx
,
D.
,
2016
, “
Measurement of Thermal Interface Conductance at Variable Clamping Pressures Using a Steady State Method
,”
Appl. Therm. Eng.
,
96
, pp.
671
681
.
16.
Kempers
,
R.
,
Kolodner
,
P.
,
Lyons
,
A.
, and
Robinson
,
A.
,
2009
, “
A High-Precision Apparatus for the Characterization of Thermal Interface Materials
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
095111
.
17.
Thompson
,
D. R.
,
Rao
,
S. R.
, and
Cola
,
B. A.
,
2013
, “
A Stepped-Bar Apparatus for Thermal Resistance Measurements
,”
ASME J. Electron. Packag.
,
135
(
4
), p.
041002
.
18.
Gwinn
,
J. P.
, and
Webb
,
R.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.
19.
Jarrett
,
R.
,
Merritt
,
C.
,
Ross
,
J.
, and
Hisert
,
J.
,
2007
, “
Comparison of Test Methods for High Performance Thermal Interface Materials
,” 23rd
IEEE
SEMI-THERM Symposium
, San Jose, CA, Mar. 18–22, pp.
83
86
.
20.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
21.
Warzoha
,
R. J.
,
Zhang
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2013
, “
Engineering Interfaces in Carbon Nanostructured Mats for the Creation of Energy Efficient Thermal Interface Materials
,”
Carbon
,
61
, pp.
441
457
.
22.
Taylor
,
J.
,
1997
,
Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements
, Vol.
2
,
University Science Books
,
Sausalito, CA
.
23.
Whitteman
,
A.
, and
Lasky
,
R. C.
, “
Heat Spring Bulk Thermal Resistance
,”
Indium Corp.
,
Utica, NY
, accessed June 22, 2016, http://www.indium.com/thermal-interface-materials/heat-spring/
You do not currently have access to this content.