This work presents an experimental study to enhance the thermal contact conductance of high performance thermal interface materials (TIMs) using gallium alloy. In this experiment, the gallium alloy-based TIMs are synthesized by a micro-oxidation reaction method, which consists of gallium oxides (Ga2O3) dispersed uniformly in gallium alloys. An experimental apparatus is designed to measure the thermal resistance across the gallium alloy-based TIMs under steady-state conditions. The existence of Ga2O3 can effectively improve the wettability of gallium alloys with other materials. For example, they have a better wettability with copper and anodic coloring 6063 aluminum-alloy without any extrusion between the interface layers. Gallium binary alloy-based TIMs (GBTIM) or ternary alloy based-TIMs (GTTIM) are found to increase the operational temperature range comparing with that of the conventional thermal greases. The measured highest thermal conductivity is as high as 19.2 Wm−1K−1 for GBTIM at room temperature. The wide operational temperature, better wettability, and higher thermal conductivity make gallium alloy-based TIMs promising for a wider application as TIMs in electronic packaging areas. The measured resistance is found to be as low as 2.2 mm2 KW−1 for GBTIM with a pressure of 0.05 MPa, which is much lower than that of the best commercialized thermal greases. In view of controlling pollution and raw materials wasting, the gallium alloy-based TIMs can be cleaned by 30% NaOH solution, and the pure gallium alloys are recycled, which can satisfy industrial production requirements effectively.

References

References
1.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
.
2.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Nguyen
,
J. L.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Investigation Into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials
,”
Int. J. Heat. Mass. Transfer
,
85
(
1
), pp.
996
1002
.
3.
Ji
,
Y.
,
Li
,
G.
,
Chang
,
C.
,
Sun
,
Y.
, and
Ma
,
H.
,
2015
, “
Investigation on Carbon Nanotubes as Thermal Interface Material Bonded With Liquid Metal Alloy
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091017
.
4.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat. Mass. Transfer
,
49
(
9–10
), pp.
1658
1666
.
5.
Chuang
,
H. F.
,
Cooper
,
S. M.
,
Meyyappan
,
M.
, and
Cruden
,
B. A.
,
2004
, “
Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,”
J. Nanosci. Nanotechnol.
,
4
(
8
), pp.
964
967
.
6.
Hamdan
,
A.
,
Mclanahan
,
A.
, and
Richards
,
R.
,
2011
, “
Characterization of a Liquid-Metal Microdroplet Thermal Interface Material
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1250
1254
.
7.
Mahajan
,
R.
,
Nair
,
R.
,
Wakharkar
,
V.
,
Swan
,
J.
,
Tang
,
J.
, and
Vandentop
,
G.
,
2002
, “
Emerging Directions for Packaging Technologies
,”
Intel Technol. J.
,
6
(
2
), pp.
62
75
.
8.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
9.
Kempers
,
R.
,
Lyons
,
A. M.
, and
Robinson
,
A. J.
,
2013
, “
Modeling and Experimental Characterization of Metal Microtextured Thermal Interface Materials
,”
ASME J. Heat Transfer
,
136
(
1
), pp.
81
84
.
10.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
, “
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.
11.
Blazej
,
D.
,
2003
, “
Thermal Interface Materials
,”
Electron. Cooling
,
9
(
4
), pp.
14
20
.
12.
Chung
,
D. D. L.
,
2001
, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
(
1
), pp.
56
59
.
13.
Cola
,
B. A.
,
2010
, “
Carbon Nanotubes as High Performance Thermal Interface Materials
,”
Electron. Cooling Mag.
,
16
(1), pp.
10
15
.
14.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon. Packag Technol.
,
29
(
2
), pp.
261
267
.
15.
Xu
,
Y.
,
Zhang
,
Y.
,
Suhir
,
E.
, and
Wang
,
X.
,
2006
, “
Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling
,”
J. Appl. Phys.
,
100
(
7
), p.
074302
.
16.
McNamara
,
A. J.
,
Joshi
,
Y.
,
Zhang
,
Z.
,
Moon
,
K.
,
Lin
,
Z.
,
Yao
,
Y.
,
Wong
,
C.
, and
Lin
,
W.
,
2015
, “
Double-Sided Transferred Carbon Nanotube Arrays for Improved Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
137
(
3
), p.
031014
.
17.
Raza
,
M. A.
,
Westwood
,
A.
, and
Stirling
,
C.
,
2015
, “
Comparison of Carbon Nanofiller-Based Polymer Composite Adhesives and Pastes for Thermal Interface Applications
,”
Mater. Des.
,
85
, pp.
67
75
.
18.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
,”
Nano Lett.
,
12
(
2
), pp.
861
867
.
19.
Chung
,
D. D. L.
,
2001
, “
Materials for Thermal Conduction
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1593
1605
.
20.
Zhang
,
R.
,
Cai
,
J.
,
Wang
,
Q.
,
Li
,
J. W.
,
Hu
,
Y.
,
Du
,
H.
, and
Li
,
L. L.
,
2014
, “
Thermal Resistance Analysis of Sn-Bi Solder Paste Used as Thermal Interface Material for Power Electronics Applications
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011012
.
21.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
22.
Hamdan
,
A.
,
McLanahan
,
A.
,
Richards
,
R.
, and
Richards
,
C.
,
2011
, “
Characterization of a Liquid-metal Micro Droplets Thermal Interface Material
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1250
1254
.
23.
Booth
,
R. B.
,
Grube
,
G. W.
,
Gruber
,
P. A.
,
Khandros
,
I. Y.
, and
Zingher
,
A. R.
,
1992
, U.S. Patent No. 5.198.189.
24.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Accelerated Aging and Thermal Cycling of Low Melting Temperature Alloys as Wet Thermal Interface Materials
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2698
2704
.
25.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2016
, “
Durability of Low Melt Alloys as Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010913
.
26.
Gao
,
Y. X.
, and
Liu
,
J.
,
2012
, “
Gallium-Based Thermal Interface Material With High Compliance and Wettability
,”
Appl. Phys. A
,
107
(
3
), pp.
701
708
.
27.
Deng
,
Y. G.
, and
Liu
,
J.
,
2009
, “
Corrosion Development Between Liquid Gallium and Four Typical Metal Substrates Used in Chip Cooling Device
,”
Appl. Phys. A
,
95
(
3
), pp.
907
915
.
28.
Nakajima
,
M.
,
Usami
,
M.
,
Nakazawa
,
K.
,
Arishima
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Developmental Toxicity of Indium: Embryotoxicity and Teratogenicity in Experimental Animals
,”
Congenital Anomalies
,
48
(
4
), pp.
145
150
.
29.
Gao
,
Y. X.
,
Li
,
H. Y.
, and
Liu
,
J.
,
2012
, “
Direct Writing of Flexible Electronics Through Room Temperature Liquid Metal Ink
,”
PLoS ONE
,
7
(
9
), p.
e45485
.
30.
Surdu-Bob
,
C. C.
,
Saied
,
S. O.
, and
Sullivan
,
J. L.
,
2001
, “
An X-Ray Photoelectron Spectroscopy Study of the Oxides of GaAs
,”
Appl. Surf. Sci.
,
183
(
1–2
), pp.
126
136
.
31.
Ishikawa
,
T.
, and
Ikoma
,
H.
,
1992
, “
X-Ray Photoelectron Spectroscopic Analysis of the Oxide of GaAs
,”
Jpn. J. Appl. Phys.
,
31
(
12A
), pp.
3981
3987
.
32.
Scharmann
,
F.
,
Cherkashinin
,
G.
,
Breternitz
,
V.
,
Hartung
,
G.
,
Weber
,
T.
, and
Schaefer
,
J. A.
,
2004
, “
Viscosity Effect on GaInSn Studied by XPS
,”
Surf. Interface Anal.
,
36
(
8
), pp.
981
985
.
33.
Stietz
,
F.
,
Allinger
,
T.
,
Polyakov
,
V.
,
Woll
,
J.
,
Goldmann
,
A.
,
Erfurth
,
W.
,
Lapeyre
,
G. J.
, and
Schaefer
,
J. A.
,
1996
, “
Segregation of in Atoms at Clean and Hydrogen Passivated InP(100) Surfaces
,”
Appl. Surf. Sci.
,
104–105
(
5
), pp.
169
175
.
34.
Wang
,
L.
, and
Liu
,
J.
,
2015
, “
Ink Spraying Based Liquid Metal Printed Electronics for Directly Making Smart Home Appliances
,”
ECS J. Solid State Sci.
,
4
(
4
), pp.
3057
3062
.
35.
Evans
,
D. S.
, and
Prince
,
A.
,
1978
, “
Thermal Analysis of Ga-In-Sn System
,”
Met. Sci.
,
12
(
9
), pp.
411
414
.
36.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Liquid Metal Cooling in the Thermal Management of Computer Chips
,”
Front. Energy Power Eng. China
,
1
(
4
), pp.
384
402
.
37.
Liu
,
T. Y.
,
Sen
,
P.
, and
Kim
,
C. J.
,
2012
, “
Characterization of Nontoxic Liquid Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.
38.
Due
,
J.
, and
Robinson
,
A. J.
,
2013
, “
Reliability of Thermal Interface Materials: A Review
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
455
463
.
39.
Kaga
,
M.
,
Nakajima
,
H.
,
Sakai
,
T.
, and
Oguchi
,
H.
,
1996
, “
Gallium Alloy Restorations in Primary Teeth: A 12-Month Study
,”
J. Am. Dent. Assoc.
,
127
(
8
), pp.
1195
1200
.
You do not currently have access to this content.