Thermal management of very large-scale computers will have to leave the traditional well-beaten path. Up to the present time, the primary concern has been with rising heat flux on the integrated circuit chip, while a space has been available for the implementation of high-performance cooling design. In future systems, the spatial constraint will become a primary determinant of thermal management methodology. To corroborate this perspective, the evolution of computer's hardware morphology is simulated. Simulation tool is the geometric model, where the model structure is composed of circuit cells and platforms for circuit blocks. The cell is the minimum circuit element whose size is pegged to the technology node, while the total number of cells represents the system size. The platforms are the models of microprocessor chips, multichip modules (MCMs), and printed wiring boards (PWBs). The major points of discussion are as follows: (1) The system morphology is dictated by the competition between the progress of technology node and the demand for increase in the system size. (2) Only where the miniaturization of cells is achieved so as to deploy a system on a few PWBs, ample space is created for thermal management. (3) In the future, the cell miniaturization will hit the physical limit, while the demand for larger systems will be unabated. Liquid cooling, where the coolant is driven through very long microchannels, may provide a viable thermal solution.

References

References
1.
Alkharabsheh
,
S.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
,
Joshi
,
Y.
, and
Sammakia
,
B.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
12
), p.
040801
.
2.
Leavitt
,
N.
,
2012
, “
Big Iron Moves Toward Exascale Computing
,”
IEEE Comput.
,
45
(
11
), pp.
14
17
.
3.
Ruch
,
P.
,
Brunschwiler
,
T.
,
Escher
,
W.
,
Paredes
,
S.
, and
Michel
,
B.
,
2011
, “
Toward Five-Dimensional Scaling: How Density Improves Efficiency in Future Computers
,”
IBM J. Res. Dev.
,
55
(
5
), pp.
15:1
15:13
.
4.
Nakayama
,
W.
,
2013
, “
A Card Stack Model to Elucidate Key Challenges in the Development of Future Generation Supercomputers
,”
IEEE Access
,
1
(
1
), pp.
436
448
.
5.
Tummala
,
R. R.
, ed.,
2001
,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
6.
Tummala
,
R. R.
,
Rymasazewski
,
E. J.
, and
Klopfenstein
,
A. G.
, eds.,
1997
,
Microelectronics Packaging Handbook: Parts I–III
,
Chapman & Hall
,
New York
.
7.
Kodaka
,
T.
,
Wakai
,
M.
,
Hashimoto
,
T.
,
Ogawa
,
K.
,
Wada
,
K.
, and
Sakamoto
,
M.
,
1985
, “
Processing Scheme of M-680/682H With Enhanced High-Speed Performance by Means of ALU Pipelines and Hierarchical Memories
,”
Nikkei Electron.
,
1985
, pp.
228
288
.
8.
Kobayashi
,
F.
,
Watanabe
,
Y.
,
Yamamoto
,
M.
,
Anzai
,
A.
,
Takahashi
,
A.
,
Daikoku
,
T.
, and
Fujita
,
T.
,
1991
, “
Hardware Technology for HITACHI M-880 Processor Group
,”
41st Electronic Components and Technology Conference
, (
ECTC
), Atlanta, GA, May 11–16, pp.
693
703
.
9.
Kobayashi
,
F.
,
Watanabe
,
Y.
,
Kasai
,
K.
,
Koide
,
K.
,
Nakanishi
,
K.
, and
Sato
,
R.
,
2000
, “
Hardware Technology for the HITACHI MP5800 Series (HDS Skyline Series)
,”
IEEE Trans. Adv. Packag.
,
23
(
3
), pp.
504
514
.
10.
Anysilicon
,
2013
, “
Semiconductor Technology Nodes—History, Trends and Forecast (Online Newsletter)
,” Anysilicon, Scottsdale, AZ, accessed June 7, 2013, http://anysilicon.com/semiconductor-technology-nodes/
11.
ITR
,
2005
, “
International Technology Roadmap for Semiconductors, 2005 Edition: Executive Summary
,”
International Roadmap Committee
, Semiconductor Industry Association, Washington, DC.
12.
ITR
,
2013
, “
International Technology Roadmap for Semiconductors, 2013 Edition: Table ORTC1
,”
International Roadmap Committee
, Semiconductor Industry Association, Washington, DC.
13.
Borkar
,
S.
,
2007
, “
Thousand Core Chips—A Technology Perspective
,”
IEEE Design Automation Conference
(
DAC 2007
), San Diego, CA, June 4–8, pp.
746
749
.
14.
Yoshida
,
T.
,
Maruyama
,
T.
,
Akizuki
,
Y.
,
Kan
,
R.
,
Kiyota
,
N.
,
Ikenishi
,
K.
,
Itou
,
S.
, and
Watahiki
,
T.
,
2013
, “
SPARC64 X: Fujitsu's New Generation 16-Core Processor for UNIX Server
,”
IEEE Micro
,
33
(
6
), pp.
16
24
.
15.
Dighe
,
S.
,
Vabgel
,
S.
,
Borkar
,
N.
, and
Borkar
,
S.
,
2009
, “
Lessons Learned From the 80-Core Tera-Scale Research Processor
,”
Intel Technol. J.
,
13
(
4
), pp.
118
129
.
16.
Fujitsu
,
2008
, “
Fujitsu SPARC64 VII Processor
,” White Paper, Release 1.0, Fujitsu Limited, Tokyo, Japan, http://jp.fujitsu.com/solutions/hpc/brochures
17.
Maruyama
,
T.
,
2009
, “
SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale Computing
,” HotChips21, Fujitsu Limited, Tokyo, Japan, http://jp.fujitsu.com/solutions/hpc/brochures
18.
Yoshida
,
T.
,
Hondou
,
M.
,
Tabata
,
T.
,
Kan
,
R.
,
Kiyota
,
N.
,
Kojima
,
H.
,
Hosoe
,
K.
, and
Okano
,
H.
,
2015
, “
SPARC64 XIFX: Fujitsu's Next-Generation Processor for High-Performance Computing
,”
IEEE Micro
,
35
(
2
), pp.
6
14
.
19.
Wei
,
J.
,
2008
, “
Challenges in Cooling Design of CPU Packages for High-Performance Servers
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.
20.
Fujitsu Siemens
,
2006
, “
Data Sheet ‘PRIMEPOWER 2500’
,” Fujitsu Siemens, Munich, Germany, http://www.tech.proact.co.uk/primepower/primepower_2500.pdf
21.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.
22.
Danielson
,
R. D.
,
Krajewski
,
N.
, and
Brost
,
J.
,
1986
, “
Cooling a Superfast Computer
,”
Electron. Packag. Prod.
,
July
, pp.
44
45
.
23.
Maeda
,
H.
,
Kubo
,
H.
,
Shimamori
,
H.
,
Tamura
,
A.
, and
Wei
,
J.
,
2012
, “
System Packaging Technologies for the K computer
,”
Fujitsu Sci. Tech. J.
,
48
(
3
), pp.
286
294
.
24.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sink for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
25.
Nair
,
R.
,
2015
, “
Evolution of Memory Architecture
,”
Proc. IEEE
,
103
(
8
), pp.
1331
1345
.
26.
Nakayama
,
W.
,
2014
, “
Heat in Computers: Applied Heat Transfer in Information Technology
,”
ASME J. Heat Transfer
,
136
(
1
), p.
013001
.
27.
Nikonov
,
D. E.
, and
Young
,
I. A.
,
2013
, “
Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking
,”
Proc. IEEE
,
101
(
12
), pp.
2498
2533
.
You do not currently have access to this content.