Heat dissipation from three-dimensional (3D) chip stacks can cause large thermal gradients due to the accumulation of dissipated heat and thermal interfaces from each integrated die. To reduce the overall thermal resistance and thereby the thermal gradients, this publication will provide an overview of several studies on the formation of sequential thermal underfills that result in percolation and quasi-areal thermal contacts between the filler particles in the composite material. The quasi-areal contacts are formed from nanoparticles self-assembled by capillary bridging, so-called necks. Thermal conductivities of up to 2.5 W/m K and 2.8 W/m K were demonstrated experimentally for the percolating and the neck-based underfills, respectively. This is a substantial improvement with respect to a state-of-the-art capillary thermal underfill (0.7 W/m K). Critical parameters in the formation of sequential thermal underfills will be discussed, such as the material choice and refinement, as well as the characteristics and limitations of the individual process steps. Guidelines are provided on dry versus wet filling of filler particles, the optimal bimodal nanosuspension formulation and matrix material feed, and the over-pressure cure to mitigate voids in the underfill during backfilling. Finally, the sequential filling process is successfully applied on microprocessor demonstrator modules, without any detectable sign of degradation after 1500 thermal cycles, as well as to a two-die chip stack. The morphology and performance of the novel underfills are further discussed, ranging from particle arrangements in the filler particle bed, to cracks formed in the necks. The thermal and mechanical performance is benchmarked with respect to the capillary thermal and mechanical underfills. Finally, the thermal improvements within a chip stack are discussed. An 8 - or 16-die chip stack can dissipate 46% and 65% more power with the optimized neck-based thermal underfill than with a state-of-the-artcapillary thermal underfill.

References

References
1.
Ruch
,
P.
,
Brunschwiler
,
T.
,
Escher
,
W.
,
Paredes
,
S.
, and
Michel
,
B.
,
2011
, “
Toward Five-Dimensional Scaling: How Density Improves Efficiency in Future Computers
,”
IBM J. Res. Develop.
,
55
(
5
), pp.
15:1
15:13
.
2.
Iyer
,
S. S.
,
2012
, “
The Evolution of Dense Embedded Memory in High Performance Logic Technologies
,”
IEEE International Electron Devices Meeting
(
IEDM
), San Francisco, CA, Dec. 10–13, pp.
33.1.1
33.1.4
.
3.
Jeddeloh
,
J.
, and
Keeth
,
B.
,
2012
, “
Hybrid Memory Cube New DRAM Architecture Increases Density and Performance
,”
Symposium on VLSI Technology
(
VLSIT
), Honolulu, HI, June 12–14, pp.
87
88
.
4.
Erdmann
,
C.
,
Lowney
,
D.
,
Lynam
,
A.
,
Keady
,
A.
,
McGrath
,
J.
,
Cullen
,
E.
,
Breathnach
,
D.
,
Keane
,
D.
,
Lynch
,
P.
, and
De La Torre
,
M.
,
2015
, “
A Heterogeneous 3D-IC Consisting of Two 28 nm FPGA Die and 32 Reconfigurable High-Performance Data Converters
,”
Solid-State Circuits
,
50
(
1
), pp.
258
269
.
5.
Zhao
,
J.
,
Sun
,
G.
,
Loh
,
G. H.
, and
Xie
,
Y.
,
2012
, “
Energy-Efficient GPU Design With Reconfigurable In-Package Graphics Memory
,”
ACM/IEEE International Symposium on Low Power Electronics and Design
(
ISLPED’12
), Redondo Beach, CA, Aug. 8–10, pp.
403
408
.
6.
Matsumoto
,
K.
, and
Taira
,
Y.
,
2009
, “
Thermal Resistance Measurements of Interconnections for the Investigation of the Thermal Resistance of a Three-Dimensional (3D) Chip Stack
,” 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMITHERM 2009
), San Jose, CA, Mar. 15–19, pp.
321
328
.
7.
Brunschwiler
,
T.
,
Goicochea
,
J.
,
Matsumoto
,
K.
,
Wolf
,
H.
,
Kumin
,
C.
,
Michel
,
B.
,
Wunderle
,
B.
, and
Faust
,
W.
,
2011
, “
Formulation of Percolating Thermal Underfill by Sequential Convective Gap Filling
,”
IMAPS
International Conference and Exhibition on Device Packaging, Phoenix, AZ, Mar. 8–10, pp.
229
237
.
8.
Oprins
,
H.
,
Cherman
,
V.
,
Van der Plas
,
G.
,
De Vos
,
J.
, and
Beyne
,
E.
,
2015
, “
Experimental Characterization of the Vertical and Lateral Heat Transfer in 3D-SiC Packages
,”
ASME
Paper No. IPACK2015-48316.
9.
Sri-Jayantha
,
S. M.
,
McVicker
,
G.
,
Bernstein
,
K.
, and
Knickerbocker
,
J. U.
,
2008
, “
Thermomechanical Modeling of 3D Electronic Packages
,”
IBM J. Res. Dev.
,
52
(
6
), pp.
623
634
.
10.
Chena
,
H.
,
Hsua
,
K.
,
Lin
,
T.
, and
Leu
,
J.
,
2008
, “
Thermal Behavior Analysis of Lead-Free Flip-Chip Ball Grid Array Packages With Different Underfill Material Properties
,” International Conference on Electronic Packaging Technology & High Density Packaging (
ICEPT-HDP 2008
), Pudong, Shanghai, China, July 28–31.
11.
Lee
,
W. S.
,
Han
,
I. Y.
,
Yu
,
J.
,
Kim
,
S. J.
, and
Lee
,
T. Y.
,
2004
, “
Thermal Characterization of Thermally Conductive Underfill for a Flip-Chip Package Using Novel Temperature Sensing Technique
,”
6th Electronics Packaging Technology Conference
(
EPTC 2004
), Singapore, Dec. 8–10, pp. 148–155.
12.
Rasiah
,
I. J.
,
Ho
,
P. S.
,
Manoharan
,
M.
,
Ng
,
C. L.
, and
Chau
,
M.
,
1998
, “
Rheological Analysis of an Underfill Material
,”
2nd Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 10, pp. 354–358.
13.
Liang
,
Q.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2008
, “
High Thermal Conductive Underfill Materials for Flip-Chip Application
,”
7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics
(
PORTABLE-POLYTRONIC 2008
), Garmisch-Partenkirchen, Germany, Aug. 17–20.
14.
Brunschwiler
,
T.
,
Goicochea
,
J.
,
Matsumoto
,
K.
,
Wolf
,
H.
,
Kümin
,
C.
,
Michel
,
B.
,
Wunderle
,
B.
, and
Faust
,
W.
,
2011
, “
Formulation of Percolating Thermal Underfill by Sequential Convective Gap Filling
,”
iMAPS Device Packaging Conference
, Scottsdale, AZ, Mar. 8–10, pp.
229
237
.
15.
Zürcher
,
J.
,
Goicochea
,
J.
,
Matsumoto
,
K.
,
Michel
,
B.
, and
Brunschwiler
,
T.
,
2012
, “
Centrifugal Formulation of Percolating Thermal Underfills for Flip-Chip Applications
,”
7th International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8.
16.
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Ni
,
S.
,
Liu
,
Y.
,
Goicochea
,
J. V.
,
J.
Zürcher
, and
Wolf
,
H.
,
2012
, “
Formulation of Percolating Thermal Underfills Using Hierarchical Self-Assembly of Micro- and Nanoparticles by Centrifugal Forces and Capillary Bridging
,”
J. Microelectron. Electron. Packaging
,
9
(
4
), pp.
149
159
.
17.
Devpura
,
A.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2000
, “
Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology
,”
IEEE Inter Society Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (
ITHERM 2000
), , May 23–26, pp.
21
28
.
18.
Teertstra
,
P.
,
2007
, “
Thermal Conductivity and Contact Resistance Measurements for Adhesives
,”
ASME
Paper No. IPACK2007-33026.
19.
Prasher
,
R. S.
,
Koning
,
P.
,
Shipley
,
J.
, and
Devpura
,
A.
,
2003
, “
Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction
,”
ASME J. Electron. Packag.
,
125
(3), pp.
386
391
.
20.
Singhal
,
V.
,
Siegmund
,
T.
, and
Garimella
,
S. V.
,
2004
, “
Optimization of Thermal Interface Materials for Electronics Cooling Applications
,”
IEEE Tans. Comp. Packag. Technol.
,
27
(
2
), pp.
244
252
.
21.
Scheel
,
M.
,
Seemann
,
R.
,
Brinkmann
,
M.
,
Di Michiel
,
M.
,
Sheppard
,
A.
,
Breidenbach
,
B.
, and
Herminghaus
,
S.
,
2008
, “
Morphological Clues to Wet Granular Pile Stability
,”
Nature Mater.
,
7
(
3
), pp.
189
193
.
22.
Vakarelski
,
I. U.
,
Chan
,
D. Y.
,
Nonoguchi
,
T.
,
Shinto
,
H.
, and
Higashitani
,
K.
,
2009
, “
Assembly of Gold Nanoparticles Into Microwire Networks Induced by Drying Liquid Bridges
,”
Phys. Rev. Lett.
,
102
(
5
), p.
058303
.
23.
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Ni
,
S.
,
Liu
,
Y.
,
Goicochea
,
J. V.
,
Zürcher
,
J.
, and
Wolf
,
H.
,
2013
, “
Enhanced Electrical and Thermal Interconnects by the Self-Assembly of Nanoparticle Necks Utilizing Capillary Bridging
,”
ASME
Paper No. IPACK2013-73092.
24.
Zimmermann
,
S.
,
Brunschwiler
,
T.
,
Zuercher
,
J.
,
Burg
,
B.
,
Hong
,
G.
,
Poulikakos
,
D.
,
Baum
,
M.
,
Hoffmann
,
C.
,
2014
, “
Characterization of Particle Beds in Percolating Thermal Underfills Based on Centrifugation
,” International 3D Systems Integration Conference (
3DIC
), Cork, Ireland, Dec. 1–3.
25.
Zimmermann
,
S.
,
Straessle
,
R.
,
del Carroa
,
L.
,
Zuercher
,
J.
,
Achen
,
A.
,
Schindler-Saefkow
,
F.
,
Hong
,
G.
,
Poulikakos
,
D.
, and
Brunschwiler
,
T.
, “
Thermally Conductive Composite Material With Percolating Microparticles Applied as Underfill
,”
J. Adv. Eng. Mater.
(in press).
26.
Zuercher
,
J.
,
Chen
,
X.
,
Burg
,
B.
,
Zimmermann
,
S.
,
Studart
,
A.
,
Potasiewicz
,
G.
,
Warszyski
,
P.
, and
Brunschwiler
,
T.
,
2015
, “
Enhanced Thermal Underfills by Bridging Nanoparticle Assemblies in Percolating Microparticle Beds
,” 15th International Conference on Nanotechnology (
IEEE-NANO
), Rome, Italy, July 27–30, pp. 577–580.
27.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.
28.
Burg
,
B.
,
Kolly
,
M.
,
Blasakis
,
N.
,
Gschwend
,
D.
,
Zürcher
,
J.
, and
Brunschwiler
,
T.
,
2015
, “
Steady-State Low Thermal Resistance Characterization Apparatus: The Bulk Thermal Tester
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
124903
.
29.
Desmond
,
K. W.
, and
Weeks
,
E. R.
,
2009
, “
Random Close Packing of Disks and Spheres in Confined Geometries
,”
Phys. Rev. E
,
80
(
5
), p.
051305
.
30.
Schlottig
,
G.
,
Schindler-Saefkow
,
F.
,
Zürcher
,
J.
,
Michel
,
B.
, and
Brunschwiler
,
T.
,
2013
, “
Sequentially Formed Underfills: Thermo-Mechanical Properties of Underfills at Full Filler Percolation
,”
IEEE 15th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 11–13, pp.
565
569
.
31.
Schindler-Saefkow
,
F.
,
Pantou
,
R.
,
Schlottig
,
G.
,
Kumar
,
S.
,
Brunschwiler
,
T.
,
Keller
,
J.
,
Wunderle
,
B.
, and
Rzepka
,
S.
,
2016
, “
Master Curve Synthesis by Effective Viscoelastic Plastic Material Modeling
,”
International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Montpellier, France, Apr. 17–20.
You do not currently have access to this content.