In this paper, a lattice Boltzmann method (LBM)-based model is developed to simulate the subcontinuum behavior of multidimensional heat conduction in solids. Based on a previous study (Chen et al., 2014, “Sub-Continuum Thermal Modeling Using Diffusion in the Lattice Boltzmann Transport Equation,” Int. J. Heat Mass Transfer, 79, pp. 666–675), phonon energy transport is separated to a ballistic part and a diffusive part, with phonon equilibrium assumed at boundaries. Steady-state temperature/total energy density solutions from continuum scales to ballistic scales are considered. A refined LBM-based numerical approach is applied to a two-dimensional simplified transistor model proposed by (Sinha et al. 2006, “Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors,” ASME J. Heat Transfer, 128(7), pp. 638–647), and the results are compared with the Fourier-based heat conduction model. The three-dimensional (3D) LBM model is also developed and verified at both the ballistic and continuous limits. The impact of film thickness on the cross-plane and in-plane thermal conductivities is analyzed, and a new model of the supplementary diffusion term is proposed. Predictions based on the finalized model are compared with the existing in-plane thermal conductivity measurements and cross-plane thermal conductivity molecular dynamics (MD) results.

References

References
1.
Liu
,
W.
, and
Asheghi
,
M.
,
2006
, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
75
83
.
2.
Sinha
,
S.
, and
Goodson
,
K. E.
,
2006
, “
Thermal Conduction in Sub-100nm Transistors
,”
Microelectron. J.
,
37
(
11
), pp.
1148
1157
.
3.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2006
, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
638
647
.
4.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2005
, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
713
723
.
5.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.
6.
Sverdrup
,
P. G.
,
Sinha
,
S.
,
Asheghi
,
M.
,
Uma
,
S.
, and
Goodson
,
K. E.
,
2001
, “
Measurement of Ballistic Phonon Conduction Near Hotspots in Silicon
,”
Appl. Phys. Lett.
,
78
(
21
), pp.
3331
3333
.
7.
Liu
,
W.
, and
Asheghi
,
M.
,
2004
, “
Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers
,”
Appl. Phys. Lett.
,
84
(
19
), pp.
3819
3821
.
8.
Liu
,
W.
, and
Asheghi
,
M.
,
2005
, “
Thermal Conductivity in Ultra-Thin Pure and Doped Single Crystal Silicon Layers at High Temperatures
,”
ASME
Paper No. HT2005-72540.
9.
Wang
,
Z.
, and
Li
,
Z.
,
2006
, “
Research on the Out-of-Plane Thermal Conductivity of Nanometer Silicon Film
,”
Thin Solid Films
,
515
(4), pp.
2203
2206
.
10.
Gomes
,
C. J.
,
Madrid
,
M.
,
Goicochea
,
J. V.
, and
Amon
,
C. H.
,
2006
, “
In-Plane and Out-of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1114
1121
.
11.
Terris
,
D.
,
Joulain
,
K.
,
Lemonnier
,
D.
,
Lacroix
,
D.
, and
Chantrenne
,
P.
,
2009
, “
Prediction of the Thermal Conductivity Anisotropy of Si Nanofilms: Results of Several Numerical Methods
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1467
1476
.
12.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schimidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.
13.
Regner
,
K. T.
,
Sellan
,
D. P.
,
Su
,
Z.
,
Amon
,
C. H.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,
2013
, “
Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermo-Reflectance
,”
Nat. Commun.
,
4
(1640).
14.
Sverdrup
,
P. G.
,
2000
, “
Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices
,” Ph.D. dissertation, Stanford University, Stanford, CA.
15.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
2001
, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
130
137
.
16.
Mansoor
,
S. B.
, and
Yilbas
,
B. S.
,
2011
, “
Phonon Transport in Silicon-Silicon and Silicon-Diamond Thin Films: Consideration of Thermal Boundary Resistance at Interface
,”
Phys. B
,
406
(
11
), pp.
2186
2195
.
17.
Zhang
,
W.
, and
Fisher
,
T. S.
,
2002
, “
Application of the Lattice Boltzmann Method to Sub Continuum Heat Conduction
,” Paper No. IMECE 2002-32122.
18.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Amon
,
C. H.
, and
Jhon
,
M. S.
,
2003
, “
Time-Dependent Simulations of Sub-Continuum Heat Generation Effects in Electronic Devices Using the Lattice Boltzmann Method
,” Paper No. IMECE2003-41522.
19.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
,
2006
, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Application to Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
49
(1–2), pp.
97
107
.
20.
Pisipati
,
S.
,
Geer
,
J.
,
Sammakia
,
B. G.
, and
Murray
,
B. T.
,
2011
, “
A Novel Alternate Approach for Multi-Scale Thermal Transport Using Diffusion in the Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
54
(15–16), pp.
3406
3419
.
21.
Pisipati
,
S.
,
Chen
,
C.
,
Geer
,
J.
,
Sammakia
,
B. G.
, and
Murray
,
B. T.
,
2013
, “
Multi-Scale Thermal Device Modeling Using Diffusion in the Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
64
, pp.
286
303
.
22.
Heino
,
P
.,
2010
, “
Lattice-Boltzmann Finite-Difference Model With Optical Phonons for Nanoscale Thermal Conduction
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2351
2359
.
23.
Lebon
,
G.
,
Grmela
,
M.
, and
Dubois
,
C.
,
2011
, “
From Ballistic to Diffusive Regimes in Heat Transport at Nano-Scales
,”
C. R. Mec.
,
339
(
5
), pp.
324
328
.
24.
Donmezer
,
N.
, and
Graham
,
S.
,
2014
, “
A Multiscale Thermal Modeling Approach for Ballistic and Diffusive Heat Transport in Two-Dimensional Domains
,”
Int. J. Therm. Sci.
,
76
, pp.
235
244
.
25.
Chen
,
G
.,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
320
328
.
26.
Chen
,
C.
,
Geer
,
J.
, and
Sammakia
,
B.
,
2014
, “
Sub-Continuum Thermal Modeling Using Diffusion in the Lattice Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
79
, pp.
666
675
.
You do not currently have access to this content.