We propose a new approach to the modular packaging of microfluidic components, in which different functional components are not only fabricated separately but are also designed to be individually removable for the purposes of replacement or subsequent analysis. In this paper, we demonstrate one such component: a stand-alone microfluidic filter that can be custom-fabricated and then connected, disconnected, and replaced on a microfluidic chip as needed. This filter is also designed such that particles captured on the filter can be further analyzed or processed directly on the filter itself—for example, for microscopic examination or cell culturing. The filter is a thin (1 μm) transparent silicon nitride membrane that can be designed and fabricated according to specifications for different applications. This material is suitable for microscale fabrication; filtration of a variety of solutions, including biological samples; and subsequent particle imaging and processing. The porous nature of the thin filter allows for particle separation under relatively low pressures, thus protecting the particles from rupture or membrane damage. We describe two methods for integrating the filter apparatus onto a microfluidic chip such that it can be inserted, removed, and replaced. To demonstrate the utility of this approach, we fabricated custom-designed silicon-based filters, incorporated them onto microfluidic systems then filtered microparticles and live cells from test solutions, and finally removed the filters to image the microparticles and culture the cells directly on the filter membranes.

References

References
1.
Thorsen
,
T.
,
Maerkl
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
(
5593
), pp.
580
584
.
2.
Hofmann
,
O.
,
Wang
,
X.
,
Cornwell
,
A.
,
Beecher
,
S.
,
Raja
,
A.
,
Bradley
,
D. D.
,
Demello
,
A. J.
, and
Demello
,
J. C.
,
2006
, “
Monolithically Integrated Dye-Doped PDMS Long-Pass Filters for Disposable On-Chip Fluorescence Detection
,”
Lab Chip
,
6
(
8
), pp.
981
987
.
3.
Sia
,
S. K.
, and
Whitesides
,
G. M.
,
2003
, “
Microfluidic Devices Fabricated in Poly (Dimethylsiloxane) for Biological Studies
,”
Electrophoresis
,
24
(
21
), pp.
3563
3576
.
4.
Yager
,
P.
,
Edwards
,
T.
,
Fu
,
E.
,
Helton
,
K.
,
Nelson
,
K.
,
Tam
,
M. R.
, and
Weigl
,
B. H.
,
2006
, “
Microfluidic Diagnostic Technologies for Global Public Health
,”
Nature
,
442
(
7101
), pp.
412
418
.
5.
Trolio
,
W. M.
, and
Coville
,
W. E.
,
2000
, “
Pre-Analytical Specimen Preparation
,”
J. Assoc. Lab. Autom.
,
5
(
1
), pp.
72
78
.
6.
Brody
,
J. P.
,
Osborn
,
T. D.
,
Forster
,
F. K.
, and
Yager
,
P.
,
1996
, “
A Planar Microfabricated Fluid Filter
,”
Sens. Actuators
, A,
54
(
1
), pp.
704
708
.
7.
VanDelinder
,
V.
, and
Groisman
,
A.
,
2006
, “
Separation of Plasma From Whole Human Blood in a Continuous Cross-Flow in a Molded Microfluidic Device
,”
Anal. Chem.
,
78
(
11
), pp.
3765
3771
.
8.
Crowley
,
T. A.
, and
Pizziconi
,
V.
,
2005
, “
Isolation of Plasma From Whole Blood Using Planar Microfilters for Lab-on-a-Chip Applications
,”
Lab Chip
,
5
(
9
), pp.
922
929
.
9.
Hou
,
H. W.
,
Bhagat
,
A. A. S.
,
Lee
,
W. C. J.
,
Huang
,
S.
,
Han
,
J.
, and
Lim
,
C. T.
,
2011
, “
Microfluidic Devices for Blood Fractionation
,”
Micromachines
,
2
(
3
), pp.
319
343
.
10.
Lapizco-Encinas
,
B. H.
,
Davalos
,
R. V.
,
Simmons
,
B. A.
,
Cummings
,
E. B.
, and
Fintschenko
,
Y.
,
2005
, “
An Insulator-Based (Electrodeless) Dielectrophoretic Concentrator for Microbes in Water
,”
J. Microbiol. Methods
,
62
(
3
), pp.
317
326
.
11.
Ali
,
S.
,
Perez-Pardo
,
M. A.
,
Aucamp
,
J. P.
,
Craig
,
A.
,
Bracewell
,
D. G.
, and
Baganz
,
F.
,
2012
, “
Characterization and Feasibility of a Miniaturized Stirred Tank Bioreactor to Perform E. coli High Cell Density Fed-Batch Fermentations
,”
Biotechnol. Prog.
,
28
(
1
), pp.
66
75
.
12.
Saunders
,
K. C.
,
Ghanem
,
A.
,
Hon
,
W. B.
,
Hilder
,
E. F.
, and
Haddad
,
P. R.
,
2009
, “
Separation and Sample Pre-Treatment in Bioanalysis Using Monolithic Phases: A Review
,”
Anal. Chim. Acta
,
652
(
1
), pp.
22
31
.
13.
Guirguis
,
R. A.
,
2001
, “
Liquid Specimen Container and Attachable Testing Modules
,” U.S. Patent No. US 6509164B1.
14.
Choi
,
S.
,
Song
,
S.
,
Choi
,
C.
, and
Park
,
J. K.
,
2007
, “
Continuous Blood Cell Separation by Hydrophoretic Filtration
,”
Lab Chip
,
7
(
11
), pp.
1532
1538
.
15.
Xuan
,
X.
,
Zhu
,
J.
, and
Church
,
C.
,
2010
, “
Particle Focusing in Microfluidic Devices
,”
Microfluid. Nanofluid.
,
9
(
1
), pp.
1
16
.
16.
Tsutsui
,
H.
, and
Ho
,
C.-M.
,
2009
, “
Cell Separation by Non-Inertial Force Fields in Microfluidic Systems
,”
Mech. Res. Commun.
,
36
(
1
), pp.
92
103
.
17.
Mohamed
,
H.
,
Murray
,
M.
,
Turner
,
J. N.
, and
Caggana
,
M.
,
2009
, “
Isolation of Tumor Cells Using Size and Deformation
,”
J. Chromatogr. A
,
1216
(
47
), pp.
8289
8295
.
18.
Zheng
,
S.
,
Lin
,
H.
,
Liu
,
J. Q.
,
Balic
,
M.
,
Datar
,
R.
,
Cote
,
R. J.
, and
Tai
,
Y. C.
,
2007
, “
Membrane Microfilter Device for Selective Capture, Electrolysis and Genomic Analysis of Human Circulating Tumor Cells
,”
J. Chromatogr. A
,
1162
(
2
), pp.
154
161
.
19.
Hosokawa
,
M.
,
Hayata
,
T.
,
Fukuda
,
Y.
,
Arakaki
,
A.
,
Yoshino
,
T.
,
Tanaka
,
T.
, and
Matsunaga
,
T.
,
2010
, “
Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells
,”
Anal. Chem.
,
82
(
15
), pp.
6629
6635
.
20.
Tan
,
S. J.
,
Yobas
,
L.
,
Lee
,
G. Y.
,
Ong
,
C. N.
, and
Lim
,
C. T.
,
2009
, “
Microdevice for the Isolation and Enumeration of Cancer Cells From Blood
,”
Biomed. Microdevices
,
11
(
4
), pp.
883
892
.
21.
Wilf
,
M.
, and
Bartels
,
C.
,
2005
, “
Optimization of Seawater RO Systems Design
,”
Desalination
,
173
(
1
), pp.
1
12
.
22.
Yang
,
S. Y.
,
Park
,
J.
,
Yoon
,
J.
,
Ree
,
M.
,
Jang
,
S. K.
, and
Kim
,
J. K.
,
2008
, “
Virus Filtration Membranes Prepared From Nanoporous Block Copolymers With Good Dimensional Stability Under High Pressures and Excellent Solvent Resistance
,”
Adv. Funct. Mater.
,
18
(
9
), pp.
1371
1377
.
23.
Hearn
,
M. T.
,
Bishop
,
C. A.
,
Hancock
,
W. S.
,
Harding
,
D. R. K.
, and
Reynolds
,
G. D.
,
1979
, “
Application of Reversed Phase High Performance Liquid Chromatography in Solid Phase Peptide Synthesis: High Pressure Liquid Chromatography of Amino Acids Peptides and Proteins XIII. Part XII Ref. 2
,”
J. Liquid Chromatogr.
,
2
(
1
), pp.
1
21
.
24.
de Mello
,
A. J.
, and
Beard
,
N.
,
2003
, “
Focus. Dealing With ‘Real’ Samples: Sample Pre-Treatment in Microfluidic Systems
,”
Lab Chip
,
3
(
1
), pp.
11N
20N
.
25.
Coville
,
W. E.
, and
Loika
,
M.
,
2006
, “
Microfiltration Technology: A Sensible Approach to Automating Sample Preparation
,”
Am. Biotechnol. Lab.
,
24
(
8
), p.
12
.
26.
Hamzah
,
A. A.
,
Zainal Abidin
,
H. E.
,
Yeop Majlis
,
B.
,
Mohd Nor
,
M.
,
Ismardi
,
A.
,
Sugandi
,
G.
,
Tiong
,
T. Y.
,
Dee
,
C. F.
, and
Yunas
,
J.
,
2013
, “
Electrochemically Deposited and Etched Membranes With Precisely Sized Micropores for Biological Fluids Microfiltration
,”
J. Micromech. Microeng.
,
23
(
7
), p.
074007
.
27.
Li
,
S. J.
,
Shen
,
C.
, and
Sarro
,
P. M.
,
2011
, “
A Buried Vertical Filter for Micro and Nanoparticle Filtration
,”
Procedia Eng.
,
25
, pp.
1193
1196
.
28.
Van Rijn
,
C.
,
van der Wekken
,
M.
,
Nijdam
,
W.
, and
Elwenspoek
,
M.
,
1997
, “
Deflection and Maximum Load of Microfiltration Membrane Sieves Made With Silicon Micromachining
,”
J. Microelectromech. Syst.
,
6
(
1
), pp.
48
54
.
29.
Krishnamurthy
,
S.
,
Bischoff
,
F.
,
Ann Mayer
,
J.
,
Wong
,
K.
,
Pham
,
T.
,
Kuerer
,
H.
,
Lodhi
,
A.
,
Bhattacharyya
,
A.
,
Hall
,
C.
, and
Lucci
,
A.
,
2013
, “
Discordance in HER2 Gene Amplification in Circulating and Disseminated Tumor Cells in Patients With Operable Breast Cancer
,”
Cancer Med.
,
2
(
2
), pp.
226
233
.
30.
Mossoba
,
M.
,
Al-Khaldi
,
S. F.
,
Jacobson
,
A.
,
Segarra Crowe
,
L. I.
, and
Fry
,
F. S.
,
2003
, “
Application of a Disposable Transparent Filtration Membrane to the Infrared Spectroscopic Discrimination Among Bacterial Species
,”
J. Microbiol. Methods
,
55
(
1
), pp.
311
314
.
31.
Wang
,
Y.-C.
,
Stevens
,
A. L.
, and
Han
,
J.
,
2005
, “
Million-Fold Preconcentration of Proteins and Peptides by Nanofluidic Filter
,”
Anal. Chem.
,
77
(
14
), pp.
4293
4299
.
32.
Mohamed
,
H.
,
Turner
,
J. N.
, and
Caggana
,
M.
,
2007
, “
Biochip for Separating Fetal Cells From Maternal Circulation
,”
J. Chromatogr. A
,
1162
(
2
), pp.
187
192
.
33.
Lee
,
D.
,
Sukumar
,
P.
,
Mahyuddin
,
A.
,
Choolani
,
M.
, and
Xu
,
G.
,
2010
, “
Separation of Model Mixtures of Epsilon-Globin Positive Fetal Nucleated Red Blood Cells and Anucleate Erythrocytes Using a Microfluidic Device
,”
J. Chromatogr. A
,
1217
(
11
), pp.
1862
1866
.
34.
Huang
,
R.
,
Barber
,
T. A.
,
Schmidt
,
M. A.
,
Tompkins
,
R. G.
,
Toner
,
M.
,
Bianchi
,
D. W.
,
Kapur
,
R.
, and
Flejter
,
W. L.
,
2008
, “
A Microfluidics Approach for the Isolation of Nucleated Red Blood Cells (NRBCs) From the Peripheral Blood of Pregnant Women
,”
Prenatal Diagn.
,
28
(
10
), pp.
892
899
.
35.
Fiorini
,
G. S.
, and
Chiu
,
D. T.
,
2005
, “
Disposable Microfluidic Devices: Fabrication, Function, and Application
,”
BioTechniques
,
38
(
3
), pp.
429
446
.
36.
Archibong
,
E.
,
Stewart
,
J.
, and
Pyayt
,
A.
,
2015
, “
Optofluidic Spectroscopy Integrated on Optical Fiber Platform
,”
Sens. Bio-Sens. Res.
,
3
, pp.
1
6
.
37.
Parsons
,
G.
,
Souk
,
J.
, and
Batey
,
J.
,
1991
, “
Low Hydrogen Content Stoichiometric Silicon Nitride Films Deposited by Plasma-Enhanced Chemical Vapor Deposition
,”
J. Appl. Phys.
,
70
(
3
), pp.
1553
1560
.
38.
Williams
,
K. R.
, and
Muller
,
R. S.
,
1996
, “
Etch Rates for Micromachining Processing
,”
J. Microelectromech. Syst.
,
5
(
4
), pp.
256
269
.
39.
Cheemalapati
,
S.
,
Ladanov
,
M.
,
Winskas
,
J.
, and
Pyayt
,
A.
,
2014
, “
Optimization of Dry Etching Parameters for Fabrication of Polysilicon Waveguides With Smooth Sidewall Using Capacitively Coupled Plasma Reactor
,”
Appl. Opt.
,
53
(
25
), pp.
5745
5749
.
You do not currently have access to this content.