Thermal conductivity and interfacial thermal conductance play crucial roles in the design of engineering systems where temperature and thermal stress are of concerns. To date, a variety of measurement techniques are available for both bulk and thin film solid-state materials with a broad temperature range. For thermal characterization of bulk material, the steady-state method, transient hot-wire method, laser flash diffusivity method, and transient plane source (TPS) method are most used. For thin film measurement, the 3ω method and the transient thermoreflectance technique including both time-domain and frequency-domain analysis are widely employed. This work reviews several most commonly used measurement techniques. In general, it is a very challenging task to determine thermal conductivity and interfacial thermal conductance with less than 5% error. Selecting a specific measurement technique to characterize thermal properties needs to be based on: (1) knowledge on the sample whose thermophysical properties are to be determined, including the sample geometry and size, and the material preparation method; (2) understanding of fundamentals and procedures of the testing technique, for example, some techniques are limited to samples with specific geometries and some are limited to a specific range of thermophysical properties; and (3) understanding of the potential error sources which might affect the final results, for example, the convection and radiation heat losses.

References

References
1.
Savija
,
I.
,
Culham
,
J. R.
,
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
,
2003
, “
Review of Thermal Conductance Models for Joints Incorporating Enhancement Materials
,”
J. Thermophys. Heat Transfer.
,
17
(
1
), pp.
43
52
.
2.
Pollack
,
G. L.
,
1969
, “
Kapitza Resistance
,”
Rev. Mod. Phys.
,
41
(
1
), pp.
48
81
.
3.
Tritt
,
T. M.
, and
Weston
,
D.
,
2004
, “
Measurement Techniques and Considerations for Determining Thermal Conductivity of Bulk Materials
,”
Thermal Conductivity
,
T. M.
Tritt
, ed.,
Springer
, New York, pp.
187
203
.
4.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
5.
Zeller
,
R. C.
, and
Pohl
,
R. O.
,
1971
, “
Thermal Conductivity and Specific Heat of Noncrystalline Solids
,”
Phys. Rev. B
,
4
(
6
), pp.
2029
2041
.
6.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
7.
Madhusudana
,
C. V.
, and
Fletcher
,
L. S.
,
1986
, “
Contact Heat Transfer: The Last Decade
,”
AIAA J.
,
24
(
3
), pp.
510
523
.
8.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
9.
Machlin
,
E. S.
,
2006
,
Materials Science in Microelectronics: The Relationships Between Thin Film Processing and Structure
,
Cambridge University Press
, New York,
10.
Peumans
,
P.
,
Yakimov
,
A.
, and
Forrest
,
S. R.
,
2003
, “
Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells
,”
J. Appl. Phys.
,
93
(
7
), pp.
3693
3723
.
11.
Xi
,
J.-Q.
,
Schubert
,
M. F.
,
Kim
,
J. K.
,
Schubert
,
E. F.
,
Chen
,
M.
,
Lin
,
S.-Y.
,
Liu
,
W.
, and
Smart
,
J. A.
,
2007
, “
Optical Thin-Film Materials With Low Refractive Index for Broadband Elimination of Fresnel Reflection
,”
Nat. Photonics
,
1
(
3
), pp.
176
179
.
12.
Dresselhaus
,
M. S.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R. G.
,
Lee
,
H.
,
Wang
,
D. Z.
,
Ren
,
Z. F.
,
Fleurial
,
J.-P.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
(
8
), pp.
1043
1053
.
13.
Borca-Tasciuc
,
T.
,
Kumar
,
A. R.
, and
Chen
,
G.
,
2001
, “
Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
,
72
(
4
), pp.
2139
2147
.
14.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.
15.
Borca-Tasciuc
,
T.
, and
Chen
,
G.
,
2004
, “
Experimental Techniques for Thin-Film Thermal Conductivity Characterization
,”
Thermal Conductivity
,
T. M.
Tritt
, ed.,
Springer
, New York, pp.
205
237
.
16.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport—II: 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
11305
.
17.
Shi
,
L.
,
Dames
,
C.
,
Lukes
,
J. R.
,
Reddy
,
P.
,
Duda
,
J.
,
Cahill
,
D. G.
,
Lee
,
J.
,
Marconnet
,
A.
,
Goodson
,
K. E.
,
Bahk
,
J.-H.
,
Shakouri
,
A.
,
Prasher
,
R. S.
,
Felts
,
J.
,
King
,
W. P.
,
Han
,
B.
, and
Bischof
,
J. C.
,
2015
, “
Evaluating Broader Impacts of Nanoscale Thermal Transport Research
,”
Nanoscale Microscale Thermophys. Eng.
,
19
(
2
), pp.
127
165
.
18.
Marconnet
,
A. M.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,”
Rev. Mod. Phys.
,
85
(
3
), pp.
1295
1326
.
19.
Toberer
,
E. S.
,
Baranowski
,
L. L.
, and
Dames
,
C.
,
2012
, “
Advances in Thermal Conductivity
,”
Annu. Rev. Mater. Res.
,
42
(
1
), pp.
179
209
.
20.
ASTM
, 2013, “
Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C177-13.
21.
Pope
,
A. L.
,
Zawilski
,
B.
, and
Tritt
,
T. M.
,
2001
, “
Description of Removable Sample Mount Apparatus for Rapid Thermal Conductivity Measurements
,”
Cryogenics
,
41
(
10
), pp.
725
731
.
22.
EN
, 2011, “
Thermal Performance of Building Materials and Products: Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance
,” European Standard, London, Standard No. EN 12667:2001.
23.
ISO
, 1991, “
Thermal Insulation: Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus
,” International Organization for Standardization, New York, Standard No. ISO 8302:1991.
24.
Shi
,
L.
,
Li
,
D.
,
Yu
,
C.
,
Jang
,
W.
,
Kim
,
D.
,
Yao
,
Z.
,
Kim
,
P.
, and
Majumdar
,
A.
,
2003
, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
881
888
.
25.
Stojanovic
,
N.
,
Berg
,
J. M.
,
Maithripala
,
D. H. S.
, and
Holtz
,
M.
,
2009
, “
Direct Measurement of Thermal Conductivity of Aluminum Nanowires
,”
Appl. Phys. Lett.
,
95
(
9
), p.
91905
.
26.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.
27.
Zhang
,
X.
,
Cong
,
P. Z.
, and
Fujii
,
M.
,
2006
, “
A Study on Thermal Contact Resistance at the Interface of Two Solids
,”
Int. J. Thermophys.
,
27
(
3
), pp.
880
895
.
28.
Shahil
,
K. M.
, and
Balandin
,
A. A.
,
2012
, “
Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials
,”
Solid State Commun.
,
152
(
15
), pp.
1331
1340
.
29.
ASTM
, 2012, “
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5470-12.
30.
ASTM
, 2013, “
Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E1225-13.
31.
ASTM
, 2015, “
Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C518-15.
32.
ASTM
, 2011, “
Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E1530-11.
33.
Flynn
,
D. R.
,
1992
, “
Thermal Conductivity of Loose-Fill Materials by a Radial-Heat-Flow Method
,”
Compendium of Thermophysical Property Measurement Methods
,
K. D.
Maglić
,
A.
Cezairliyan
, and
V. E.
Peletsky
, eds.,
Springer
, New York, pp.
33
75
.
34.
ASTM
, 2010, “
Standard Test Method for Steady-State Heat Transfer Properties of Pipe Insulation
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C335/C335M-10.
35.
ISO
, 1994, “
Thermal Insulation: Determination of Steady-State Thermal Transmission Properties of Thermal Insulation of Circular Pipes
,” International Organization for Standardization, New York, Standard No. ISO 8497:
1994
.
36.
Zawilski
,
B. M.
,
Iv
,
R. T. L.
, and
Tritt
,
T. M.
,
2001
, “
Description of the Parallel Thermal Conductance Technique for the Measurement of the Thermal Conductivity of Small Diameter Samples
,”
Rev. Sci. Instrum.
,
72
(
3
), pp.
1770
1774
.
37.
Dasgupta
,
T.
, and
Umarji
,
A. M.
,
2007
, “
Thermal Properties of MoSi2 With Minor Aluminum Substitutions
,”
Intermetallics
,
15
(
2
), pp.
128
132
.
38.
Maldonado
,
O.
,
1992
, “
Pulse Method for Simultaneous Measurement of Electric Thermopower and Heat Conductivity at Low Temperatures
,”
Cryogenics
,
32
(
10
), pp.
908
912
.
39.
Sundqvist
,
B.
,
1991
, “
Thermal Diffusivity Measurements by Angstrom's Method in a Fluid Environment
,”
Int. J. Thermophys.
,
12
(
1
), pp.
191
206
.
40.
Angstrom
,
A. J.
,
1863
, “
New Method of Determining the Conductibility of Bodies
,”
Philos. Mag.
,
25
, p.
130
.
41.
Romao
,
C. P.
,
Miller
,
K. J.
,
Johnson
,
M. B.
,
Zwanziger
,
J. W.
,
Marinkovic
,
B. A.
, and
White
,
M. A.
,
2014
, “
Thermal, Vibrational, and Thermoelastic Properties of Y2Mo3O12 and Their Relations to Negative Thermal Expansion
,”
Phys. Rev. B
,
90
(
2
), p.
24305
.
42.
Miller
,
K. J.
,
Johnson
,
M. B.
,
White
,
M. A.
, and
Marinkovic
,
B. A.
,
2012
, “
Low-Temperature Investigations of the Open-Framework Material HfMgMo3O12
,”
Solid State Commun.
,
152
(
18
), pp.
1748
1752
.
43.
Kennedy
,
C. A.
, and
White
,
M. A.
,
2005
, “
Unusual Thermal Conductivity of the Negative Thermal Expansion Material, ZrW2O8
,”
Solid State Commun.
,
134
(
4
), pp.
271
276
.
44.
Whitman
,
C. A.
,
Johnson
,
M. B.
, and
White
,
M. A.
,
2012
, “
Characterization of Thermal Performance of a Solid–Solid Phase Change Material, Di-n-Hexylammonium Bromide, for Potential Integration in Building Materials
,”
Thermochim. Acta
,
531
, pp.
54
59
.
45.
Stalhane
,
B.
, and
Pyk
,
S.
,
1931
, “
New Method for Determining the Coefficients of Thermal Conductivity
,”
Tek. Tidskr.
,
61
(
28
), pp.
389
393
.
46.
Abu-Hamdeh
,
N. H.
,
Khdair
,
A. I.
, and
Reeder
,
R. C.
,
2001
, “
A Comparison of Two Methods Used to Evaluate Thermal Conductivity for Some Soils
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1073
1078
.
47.
Festa
,
C.
, and
Rossi
,
A.
,
1999
, “
Apparatus for Routine Measurements of the Thermal Conductivity of Ice Cores
,”
Ann. Glaciol.
,
29
(
1
), pp.
151
154
.
48.
ASTM
, 2009, “
Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique)
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C1113/C1113M-09.
49.
ISO
, 2010, “
Refractory materials—Determination of Thermal Conductivity—Part 1: Hot-Wire Methods (Cross-Array and Resistance Thermometer)
,” International Organization for Standardization, New York, Standard No. ISO 8894-1:2010.
50.
Franco
,
A.
,
2007
, “
An Apparatus for the Routine Measurement of Thermal Conductivity of Materials for Building Application Based on a Transient Hot-Wire Method
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2495
2504
.
51.
Assael
,
M. J.
,
Antoniadis
,
K. D.
, and
Wakeham
,
W. A.
,
2010
, “
Historical Evolution of the Transient Hot-Wire Technique
,”
Int. J. Thermophys.
,
31
(
6
), pp.
1051
1072
.
52.
Assael
,
M. J.
,
Antoniadis
,
K. D.
,
Metaxa
, I
. N.
,
Mylona
,
S. K.
,
Assael
,
J.-A. M.
,
Wu
,
J.
, and
Hu
,
M.
,
2015
, “
A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
3083
3105
.
53.
Tong
,
X. C.
,
2011
, “
Characterization Methodologies of Thermal Management Materials
,”
Advanced Materials for Thermal Management of Electronic Packaging
,
Springer
,
New York
, pp.
59
129
.
54.
ASTM
, 2009, “
Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5930-09.
55.
ASTM
, 2014, “
Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5334-14.
56.
Gong
,
L.
,
Wang
,
Y.
,
Cheng
,
X.
,
Zhang
,
R.
, and
Zhang
,
H.
,
2013
, “
Porous Mullite Ceramics With Low Thermal Conductivity Prepared by Foaming and Starch Consolidation
,”
J. Porous Mater.
,
21
(
1
), pp.
15
21
.
57.
ASTM
, 2016, “
Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D7984-16.
58.
Bouguerra
,
A.
,
Aït-Mokhtar
,
A.
,
Amiri
,
O.
, and
Diop
,
M. B.
,
2001
, “
Measurement of Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Highly Porous Building Materials Using Transient Plane Source Technique
,”
Int. Commun. Heat Mass Transfer
,
28
(
8
), pp.
1065
1078
.
59.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
.
60.
Gustavsson
,
M.
,
Karawacki
,
E.
, and
Gustafsson
,
S. E.
,
1994
, “
Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Thin Samples From Transient Measurements With Hot Disk Sensors
,”
Rev. Sci. Instrum.
,
65
(
12
), pp.
3856
3859
.
61.
He
,
Y.
,
2005
, “
Rapid Thermal Conductivity Measurement With a Hot Disk Sensor—Part 1: Theoretical Considerations
,”
Thermochim. Acta
,
436
(
1–2
), pp.
122
129
.
62.
Li
,
Y.
,
Shi
,
C.
,
Liu
,
J.
,
Liu
,
E.
,
Shao
,
J.
,
Chen
,
Z.
,
Dorantes-Gonzalez
,
D. J.
, and
Hu
,
X.
,
2014
, “
Improving the Accuracy of the Transient Plane Source Method by Correcting Probe Heat Capacity and Resistance Influences
,”
Meas. Sci. Technol.
,
25
(
1
), p.
15006
.
63.
ISO
, 2015, “
Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method
,” International Organization for Standardization, New York, Standard No. ISO 22007-2:2015.
64.
Afriyie
,
E. T.
,
Karami
,
P.
,
Norberg
,
P.
, and
Gudmundsson
,
K.
,
2014
, “
Textural and Thermal Conductivity Properties of a Low Density Mesoporous Silica Material
,”
Energy Build.
,
75
, pp.
210
215
.
65.
Min
,
S.
,
Blumm
,
J.
, and
Lindemann
,
A.
,
2007
, “
A New Laser Flash System for Measurement of the Thermophysical Properties
,”
Thermochim. Acta
,
455
(
1–2
), pp.
46
49
.
66.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
67.
Campbell
,
R. C.
,
Smith
,
S. E.
, and
Dietz
,
R. L.
,
1999
, “
Measurements of Adhesive Bondline Effective Thermal Conductivity and Thermal Resistance Using the Laser Flash Method
,” Fifteenth Annual
IEEE
Semiconductor Thermal Measurement and Management Symposium
, Mar. 9–11, pp.
83
97
.
68.
Ruoho
,
M.
,
Valset
,
K.
,
Finstad
,
T.
, and
Tittonen
,
I.
,
2015
, “
Measurement of Thin Film Thermal Conductivity Using the Laser Flash Method
,”
Nanotechnology
,
26
(
19
), p.
195706
.
69.
ASTM
, 2013, “
Standard Test Method for Thermal Diffusivity by the Flash Method
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E1461-13.
70.
ISO
, 2008, “
Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 4: Laser Flash Method
,” International Organization for Standardization, New York, Standard No. ISO 22007-4:2008.
71.
Abdulagatov
, I
. M.
,
Abdulagatova
,
Z. Z.
,
Kallaev
,
S. N.
,
Bakmaev
,
A. G.
, and
Ranjith
,
P. G.
,
2015
, “
Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods
,”
Int. J. Thermophys.
,
36
(
4
), pp.
658
691
.
72.
Khuu
,
V.
,
Osterman
,
M.
,
Bar-Cohen
,
A.
, and
Pecht
,
M.
,
2011
, “
Considerations in the Use of the Laser Flash Method for Thermal Measurements of Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
7
), pp.
1015
1028
.
73.
Völklein
,
F.
,
Reith
,
H.
, and
Meier
,
A.
,
2013
, “
Measuring Methods for the Investigation of In-Plane and Cross-Plane Thermal Conductivity of Thin Films
,”
Phys. Status Solidi A
,
210
(
1
), pp.
106
118
.
74.
Lee
,
J.
,
Li
,
Z.
,
Reifenberg
,
J. P.
,
Lee
,
S.
,
Sinclair
,
R.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conductivity Anisotropy and Grain Structure in Ge2Sb2Te5 Films
,”
J. Appl. Phys.
,
109
(
8
), p.
84902
.
75.
Völklein
,
F.
,
1990
, “
Thermal Conductivity and Diffusivity of a Thin Film SiO2-Si3N4 Sandwich System
,”
Thin Solid Films
,
188
(
1
), pp.
27
33
.
76.
Volklein
,
F.
, and
Starz
,
T.
,
1997
, “
Thermal Conductivity of Thin Films: Experimental Methods and Theoretical Interpretation
,”
XVI International Conference on Thermoelectrics
(
ICT’97
), Aug. 26–29, pp.
711
718
.
77.
Cahill
,
D. G.
,
Fischer
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Conductivity of Thin Films: Measurements and Understanding
,”
J. Vac. Sci. Technol. A
,
7
(
3
), pp.
1259
1266
.
78.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.
79.
Feser
,
J. P.
,
Chan
,
E. M.
,
Majumdar
,
A.
,
Segalman
,
R. A.
, and
Urban
,
J. J.
,
2013
, “
Ultralow Thermal Conductivity in Polycrystalline CdSe Thin Films With Controlled Grain Size
,”
Nano Lett.
,
13
(
5
), pp.
2122
2127
.
80.
Bourlon
,
A. B.
, and
Van der Tempel
,
L.
,
2006
, “
Thermal Conductivity Measurement by the 3 Omega Method
,” Philips Electronics, Koninklijke, Amsterdam, The Netherlands,
Technical Note PRTN 2005/01035
.
81.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conductivity of Thin Films: 3 Omega and Related Electrothermal Methods
,”
Annu. Rev. Heat Transfer
,
16
(
16
), pp. 7–49.
82.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
83.
Mishra
,
V.
,
Hardin
,
C. L.
,
Garay
,
J. E.
, and
Dames
,
C.
,
2015
, “
A 3 Omega Method to Measure an Arbitrary Anisotropic Thermal Conductivity Tensor
,”
Rev. Sci. Instrum.
,
86
(
5
), p.
54902
.
84.
Cahill
,
D. G.
, and
Pohl
,
R. O.
,
1987
, “
Thermal Conductivity of Amorphous Solids Above the Plateau
,”
Phys. Rev. B
,
35
(
8
), pp.
4067
4073
.
85.
Roy-Panzer
,
S.
,
Kodama
,
T.
,
Lingamneni
,
S.
,
Panzer
,
M. A.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Thermal Characterization and Analysis of Microliter Liquid Volumes Using the Three-Omega Method
,”
Rev. Sci. Instrum.
,
86
(
2
), p.
24901
.
86.
Rosencwaig
,
A.
,
1982
, “
Thermal-Wave Imaging
,”
Science
,
218
(
4569
), pp.
223
228
.
87.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.
88.
Eesley
,
G. L.
,
1983
, “
Observation of Nonequilibrium Electron Heating in Copper
,”
Phys. Rev. Lett.
,
51
(
23
), pp.
2140
2143
.
89.
Wilson
,
R. B.
,
Feser
,
J. P.
,
Hohensee
,
G. T.
, and
Cahill
,
D. G.
,
2013
, “
Two-Channel Model for Nonequilibrium Thermal Transport in Pump-Probe Experiments
,”
Phys. Rev. B
,
88
(
14
), p.
144305
.
90.
Wright
,
O. B.
, and
Kawashima
,
K.
,
1992
, “
Coherent Phonon Detection From Ultrafast Surface Vibrations
,”
Phys. Rev. Lett.
,
69
(
11
), pp.
1668
1671
.
91.
Luckyanova
,
M. N.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Jandl
,
A.
,
Bulsara
,
M. T.
,
Schmidt
,
A. J.
,
Minnich
,
A. J.
,
Chen
,
S.
,
Dresselhaus
,
M. S.
,
Ren
,
Z.
,
Fitzgerald
,
E. A.
, and
Chen
,
G.
,
2012
, “
Coherent Phonon Heat Conduction in Superlattices
,”
Science
,
338
(
6109
), pp.
936
939
.
92.
Ravichandran
,
J.
,
Yadav
,
A. K.
,
Cheaito
,
R.
,
Rossen
,
P. B.
,
Soukiassian
,
A.
,
Suresha
,
S. J.
,
Duda
,
J. C.
,
Foley
,
B. M.
,
Lee
,
C.-H.
,
Zhu
,
Y.
,
Lichtenberger
,
A. W.
,
Moore
,
J. E.
,
Muller
,
D. A.
,
Schlom
,
D. G.
,
Hopkins
,
P. E.
,
Majumdar
,
A.
,
Ramesh
,
R.
, and
Zurbuchen
,
M. A.
,
2014
, “
Crossover From Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices
,”
Nat. Mater.
,
13
(
2
), pp.
168
172
.
93.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.
94.
Schmidt
,
A. J.
,
Alper
,
J. D.
,
Chiesa
,
M.
,
Chen
,
G.
,
Das
,
S. K.
, and
Hamad-Schifferli
,
K.
,
2008
, “
Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay
,”
J. Phys. Chem. C
,
112
(
35
), pp.
13320
13323
.
95.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.
96.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2009
, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
94901
.
97.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2010
, “
Characterization of Thin Metal Films Via Frequency-Domain Thermoreflectance
,”
J. Appl. Phys.
,
107
(
2
), p.
24908
.
98.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
.
99.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nat. Mater.
,
9
(
1
), pp.
26
30
.
100.
Hoogeboom-Pot
,
K. M.
,
Hernandez-Charpak
,
J. N.
,
Gu
,
X.
,
Frazer
,
T. D.
,
Anderson
,
E. H.
,
Chao
,
W.
,
Falcone
,
R. W.
,
Yang
,
R.
,
Murnane
,
M. M.
,
Kapteyn
,
H. C.
, and
Nardi
,
D.
,
2015
, “
A New Regime of Nanoscale Thermal Transport: Collective Diffusion Increases Dissipation Efficiency
,”
Proc. Natl. Acad. Sci.
,
112
(
16
), pp.
4846
4851
.
101.
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2014
, “
Anisotropic Failure of Fourier Theory in Time-Domain Thermoreflectance Experiments
,”
Nat. Commun.
,
5
, p.
5075
.
102.
Hu
,
Y.
,
Zeng
,
L.
,
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport
,”
Nat. Nanotechnol.
,
10
(
8
), pp.
701
706
.
103.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
(
12
), pp.
8105
8113
.
104.
Zhu
,
J.
,
Tang
,
D.
,
Wang
,
W.
,
Liu
,
J.
,
Holub
,
K. W.
, and
Yang
,
R.
,
2010
, “
Ultrafast Thermoreflectance Techniques for Measuring Thermal Conductivity and Interface Thermal Conductance of Thin Films
,”
J. Appl. Phys.
,
108
(
9
), p.
94315
.
105.
Malen
,
J. A.
,
Baheti
,
K.
,
Tong
,
T.
,
Zhao
,
Y.
,
Hudgings
,
J. A.
, and
Majumdar
,
A.
,
2011
, “
Optical Measurement of Thermal Conductivity Using Fiber Aligned Frequency Domain Thermoreflectance
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081601
.
106.
Schmidt
,
A. J.
,
2013
, “
Pump-Probe Thermoreflectance
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
159
181
.
107.
Kang
,
K.
,
Koh
,
Y. K.
,
Chiritescu
,
C.
,
Zheng
,
X.
, and
Cahill
,
D. G.
,
2008
, “
Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and Sharp-Edged Optical Filters
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114901
.
108.
Schmidt
,
A.
,
Chiesa
,
M.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
An Optical Pump-Probe Technique for Measuring the Thermal Conductivity of Liquids
,”
Rev. Sci. Instrum.
,
79
(
6
), p.
64902
.
109.
Koh
,
Y. K.
,
Cahill
,
D. G.
, and
Sun
,
B.
,
2014
, “
Nonlocal Theory for Heat Transport at High Frequencies
,”
Phys. Rev. B
,
90
(
20
), p.
205412
.
110.
Davidon
,
W.
,
1991
, “
Variable Metric Method for Minimization
,”
SIAM J. Optim.
,
1
(
1
), pp.
1
17
.
111.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
112.
Yang
,
J.
,
Maragliano
,
C.
, and
Schmidt
,
A. J.
,
2013
, “
Thermal Property Microscopy With Frequency Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
84
(
10
), p.
104904
.
113.
Regner
,
K. T.
,
Majumdar
,
S.
, and
Malen
,
J. A.
,
2013
, “
Instrumentation of Broadband Frequency Domain Thermoreflectance for Measuring Thermal Conductivity Accumulation Functions
,”
Rev. Sci. Instrum.
,
84
(
6
), p.
64901
.
114.
Cahill
,
D. G.
, and
Watanabe
,
F.
,
2004
, “
Thermal Conductivity of Isotopically Pure and Ge-Doped Si Epitaxial Layers From 300 to 550 K
,”
Phys. Rev. B
,
70
(
23
), p.
235322
.
115.
Liu
,
J.
,
Zhu
,
J.
,
Tian
,
M.
,
Gu
,
X.
,
Schmidt
,
A.
, and
Yang
,
R.
,
2013
, “
Simultaneous Measurement of Thermal Conductivity and Heat Capacity of Bulk and Thin Film Materials Using Frequency-Dependent Transient Thermoreflectance Method
,”
Rev. Sci. Instrum.
,
84
(
3
), p.
34902
.
116.
Huang
,
J.
,
Park
,
J.
,
Wang
,
W.
,
Murphy
,
C. J.
, and
Cahill
,
D. G.
,
2012
, “
Ultrafast Thermal Analysis of Surface Functionalized Gold Nanorods in Aqueous Solution
,”
ACS Nano
,
7
(
1
), pp.
589
597
.
117.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.
118.
Losego
,
M. D.
,
Grady
,
M. E.
,
Sottos
,
N. R.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2012
, “
Effects of Chemical Bonding on Heat Transport Across Interfaces
,”
Nat. Mater.
,
11
(
6
), pp.
502
506
.
119.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.
120.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
,
2003
, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
,
67
(
5
), p.
54302
.
121.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2015
, “
Thermal Transport Through GaN–SiC Interfaces From 300 to 600 K
,”
Appl. Phys. Lett.
,
107
(
9
), p.
91605
.
122.
Donovan
,
B. F.
,
Szwejkowski
,
C. J.
,
Duda
,
J. C.
,
Cheaito
,
R.
,
Gaskins
,
J. T.
,
Yang
,
C.-Y. P.
,
Constantin
,
C.
,
Jones
,
R. E.
, and
Hopkins
,
P. E.
,
2014
, “
Thermal Boundary Conductance Across Metal-Gallium Nitride Interfaces From 80 to 450 K
,”
Appl. Phys. Lett.
,
105
(
20
), p.
203502
.
123.
Freedman
,
J. P.
,
Yu
,
X.
,
Davis
,
R. F.
,
Gellman
,
A. J.
, and
Malen
,
J. A.
,
2016
, “
Thermal Interface Conductance Across Metal Alloy–Dielectric Interfaces
,”
Phys. Rev. B
,
93
(
3
), p.
35309
.
124.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.
125.
Schmidt
,
A. J.
,
Collins
,
K. C.
,
Minnich
,
A. J.
, and
Chen
,
G.
,
2010
, “
Thermal Conductance and Phonon Transmissivity of Metal–Graphite Interfaces
,”
J. Appl. Phys.
,
107
(
10
), p.
104907
.
126.
Gao
,
Y.
,
Marconnet
,
A. M.
,
Xiang
,
R.
,
Maruyama
,
S.
, and
Goodson
,
K. E.
,
2013
, “
Heat Capacity, Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon Nanotube Films Using Frequency-Domain Thermoreflectance
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
9
), pp.
1524
1532
.
127.
Feser
,
J. P.
,
Liu
,
J.
, and
Cahill
,
D. G.
,
2014
, “
Pump-Probe Measurements of the Thermal Conductivity Tensor for Materials Lacking In-Plane Symmetry
,”
Rev. Sci. Instrum.
,
85
(
10
), p.
104903
.
128.
Liu
,
J.
,
Choi
,
G.-M.
, and
Cahill
,
D. G.
,
2014
, “
Measurement of the Anisotropic Thermal Conductivity of Molybdenum Disulfide by the Time-Resolved Magneto-Optic Kerr Effect
,”
J. Appl. Phys.
,
116
(
23
), p.
233107
.
129.
Jang
,
H.
,
Wood
,
J. D.
,
Ryder
,
C. R.
,
Hersam
,
M. C.
, and
Cahill
,
D. G.
,
2015
, “
Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus
,”
Adv. Mater.
,
27
(
48
), pp.
8017
8022
.
130.
Zhu
,
J.
,
Park
,
H.
,
Chen
,
J.-Y.
,
Gu
,
X.
,
Zhang
,
H.
,
Karthikeyan
,
S.
,
Wendel
,
N.
,
Campbell
,
S. A.
,
Dawber
,
M.
,
Du
,
X.
,
Li
,
M.
,
Wang
,
J.-P.
,
Yang
,
R.
, and
Wang
,
X.
,
2016
, “
Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus
,”
Adv. Electron. Mater.
,
2
(
5
), p.
1600040
.
131.
Liu
,
J.
,
Yoon
,
B.
,
Kuhlmann
,
E.
,
Tian
,
M.
,
Zhu
,
J.
,
George
,
S. M.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2013
, “
Ultralow Thermal Conductivity of Atomic/Molecular Layer-Deposited Hybrid Organic–Inorganic Zincone Thin Films
,”
Nano Lett.
,
13
(
11
), pp.
5594
5599
.
132.
Ong
,
W.-L.
,
Rupich
,
S. M.
,
Talapin
,
D. V.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,
2013
, “
Surface Chemistry Mediates Thermal Transport in Three-Dimensional Nanocrystal Arrays
,”
Nat. Mater.
,
12
(
5
), pp.
410
415
.
133.
Wang
,
X.
,
Liman
,
C. D.
,
Treat
,
N. D.
,
Chabinyc
,
M. L.
, and
Cahill
,
D. G.
,
2013
, “
Ultralow Thermal Conductivity of Fullerene Derivatives
,”
Phys. Rev. B
,
88
(
7
), p.
75310
.
134.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Shen
,
Y.
, and
Gupta
,
M. C.
,
2013
, “
Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM
,”
Phys. Rev. Lett.
,
110
(
1
), p.
15902
.
135.
Yang
,
J.
,
Ziade
,
E.
,
Maragliano
,
C.
,
Crowder
,
R.
,
Wang
,
X.
,
Stefancich
,
M.
,
Chiesa
,
M.
,
Swan
,
A. K.
, and
Schmidt
,
A. J.
,
2014
, “
Thermal Conductance Imaging of Graphene Contacts
,”
J. Appl. Phys.
,
116
(
2
), p.
23515
.
136.
Bozorg-Grayeli
,
E.
,
Sood
,
A.
,
Asheghi
,
M.
,
Gambin
,
V.
,
Sandhu
,
R.
,
Feygelson
,
T. I.
,
Pate
,
B. B.
,
Hobart
,
K.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Inhomogeneity of Nanocrystalline Diamond Films by Dual-Side Thermoreflectance
,”
Appl. Phys. Lett.
,
102
(
11
), p.
111907
.
137.
Cho
,
J.
,
Li
,
Z.
,
Bozorg-Grayeli
,
E.
,
Kodama
,
T.
,
Francis
,
D.
,
Ejeckam
,
F.
,
Faili
,
F.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
1
), pp.
79
85
.
138.
Chiritescu
,
C.
,
Cahill
,
D. G.
,
Nguyen
,
N.
,
Johnson
,
D.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
Zschack
,
P.
,
2007
, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
,
315
(
5810
), pp.
351
353
.
139.
Ezzahri
,
Y.
,
Grauby
,
S.
,
Dilhaire
,
S.
,
Rampnoux
,
J. M.
, and
Claeys
,
W.
,
2007
, “
Cross-Plan Si /SiGe Superlattice Acoustic and Thermal Properties Measurement by Picosecond Ultrasonics
,”
J. Appl. Phys.
,
101
(
1
), p.
013705
.
You do not currently have access to this content.