In order to fulfill various growing needs of application fields, the development of low-cost directly printable radio-frequency identification (RFID) tag is essential for item level tracking. Currently, there lacks an easily available way to directly write out functional consumer electronicslike typewriting on paper by an office printer. Here, we show a desktop printing of RFID tag inductors on flexible substrates via developing liquid metal ink and related working mechanisms. The directly printing inductor on various flexible substrates with extremely low cost and rapid speed was designed based on the sympathetic oscillations of multiple LC (inductor–capacitor) circuits. In order to better meet the demands of the distinct resonant circuits, a series of conceptual experiments for investigating the relationship between the character of the inductor and its parameters—shape, number of coils, line width, spacing, etc.,—have been designed. The parameters are all working upon the performance of the printed inductors by liquid metal ink printer, and the relationship laws are consistent with those of the conventional inductors. The coils number as the biggest effect factor has a linear relationship with the inductance of the spiral-type inductors. An inductor with excellent properties can be well chosen by adjusting its parameters according to various applications. The present work demonstrated the way for a low cost and easy going method in directly printing RFID tag inductors on flexible substrates.

References

References
1.
Preradovic
,
S.
,
2016
, “
Printed 3D Stacked Chipless RFID Tag With Spectral and Polarization Encoding
,”
Microwave J.
,
59
(
4
), pp.
122
133
.
2.
Salmeron
,
J. F.
,
Molina-Lopez
,
F.
,
Briand
,
D.
,
Ruan
,
J. J.
,
Ricadeneyra
,
A.
,
Carvajal
,
M. A.
,
Capitan-Vallvey
,
L. F.
,
Derooij
,
N. F.
, and
Palma
,
A. J.
,
2014
, “
Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas
,”
J. Electron. Mater.
,
43
(
2
), pp.
1
14
.
3.
Islam
,
M. A.
, and
Karmakar
,
N. C.
,
2015
, “
Compact Printable Chipless RFID Systems
,”
IEEE Trans. Microwave Theory
,
63
(
11
), pp.
3785
3793
.
4.
Jiri
,
M.
,
Lukas
,
M.
,
Robert
,
O.
,
Karel
,
V.
,
Petr
,
S.
,
Petr
,
K.
,
Pavel
,
U.
, and
Ivo
,
K.
,
2016
, “
Antenna of Silver Nanoparticles Mounted on a Flexible Polymer Substrate Constructed Using Inkjet Print Technology
,”
Jpn. J. Appl. Phys.
,
55
(
2
), p.
02BB13
.
5.
Balbin
,
I.
,
2009
, “
Phase-Encoded Chipless RFID Transponder for Large-Scale Low-Cost Applications
,”
IEEE Microwave Wireless Compon. Lett.
,
19
(
8
), pp.
509
511
.
6.
Kruesi
,
C. M.
,
Vyas
,
R. J.
, and
Tentzeris
,
M. M.
,
2009
, “
Design and Development of A Novel 3-D Cubic Antenna for Wireless Sensor Networks (WSNs) and RFID Applications
,”
IEEE Trans. Antennas Propag.
,
57
(
10
), pp.
3293
3299
.
7.
Vena
,
A.
,
Perret
,
E.
, and
Tedjini
,
S.
,
2012
, “
A Fully Printable Chipless RFID Tag With Detuning Correction Technique
,”
IEEE Microwave Wireless Compon. Lett.
,
22
(
22
), pp.
209
211
.
8.
Russo
,
A.
,
Ahn
,
B. Y.
,
Adams
,
J. J.
,
Duoss
,
E. B.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Pen-on-Paper Flexible Electronics
,”
Adv. Mater.
,
23
(
30
), pp.
3426
3430
.
9.
Dragoman
,
M.
,
Flahaut
,
E.
,
Dragoman
,
D.
,
Ahmad
,
M. A.
, and
Plana
,
R.
,
2009
, “
Writing Electronic Devices on Paper With Carbon Nanotube Ink
,”
Nanotechnology
,
20
(
37
), pp.
1
4
.
10.
Zacharatos
,
F.
,
Makrygianni
,
M.
,
Geremia
,
R.
,
Biver
,
E.
,
Karnakis
,
D.
,
Leyder
,
S.
,
Puerto
,
D.
,
Delaporte
,
P.
, and
Zergioti
,
I.
,
2016
, “
Laser Direct Write Micro-Fabrication of Large Area Electronics on Flexible Substrates
,”
Appl. Surf. Sci.
,
374
, pp.
117
123
.
11.
Redinger
,
D.
,
Molesa
,
S.
,
Yin
,
S.
,
Farschi
,
R.
, and
Subramanian
,
V.
,
2004
, “
An Ink-Jet-Deposited Passive Component Process for RFID
,”
IEEE Trans. Electron Dev.
,
51
(
12
), pp.
1978
1983
.
12.
Komoda
,
N.
,
Nogi
,
M.
,
Suganuma
,
K.
,
Kohno
,
K.
,
Akiyama
,
Y.
, and
Otsuka
,
K.
,
2012
, “
Printed Silver Nanowire Antennas With Low Signal Loss at High-Frequency Radio
,”
Nanoscale
,
4
(
10
), pp.
3148
3153
.
13.
Kim
,
N. S.
, and
Han
,
K. N.
,
2010
, “
Future Direction of Direct Writing
,”
J. Appl. Phys.
,
108
(
10
), p.
102801
.
14.
Huang
,
D.
,
Liao
,
F.
,
Molesa
,
S.
,
Redinger
,
D.
, and
Subramanian
,
V.
,
2003
, “
Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics
,”
J. Electrochem. Soc.
,
150
(
7
), pp.
412
417
.
15.
Liu
,
J.
, and
Li
,
H. Y.
,
2011
, “
A Liquid Metal Based Printed Circuit Board and Its Preparation Method
,” China Patent No. 201110140156.6.
16.
Gao
,
Y. X.
, and
Liu
,
J.
,
2012
, “
Gallium-Based Thermal Interface Material With High Compliance and Wettability
,”
Appl. Phys. A
,
107
(
3
), pp.
701
708
.
17.
Gao
,
Y. X.
,
Li
,
H. Y.
, and
Liu
,
J.
,
2012
, “
Direct Writing of Flexible Electronics Through Room Temperature Liquid Metal Ink
,”
PLoS One
,
7
(
9
), p.
e45485
.
18.
Li
,
H. Y.
,
Yang
,
Y.
, and
Liu
,
J.
,
2012
, “
Printable Tiny Thermocouple by Liquid Metal Gallium and Its Matching Metal
,”
Appl. Phys. Lett.
,
101
(
7
), p.
073511
.
19.
Gao
,
Y. X.
,
Li
,
H. Y.
, and
Liu
,
J.
,
2013
, “
Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics
,”
PLoS One
,
8
(
8
), p.
e69761
.
20.
Zhang
,
Q.
,
Gao
,
Y. X.
, and
Liu
,
J.
,
2014
, “
Atomized Spraying of Liquid Metal Droplets on Desired Substrate Surfaces as a Generalized Way for Ubiquitous Printed Electronics
,”
Appl. Phys. A
,
116
(
3
), pp.
1091
1097
.
21.
Zheng
,
Y.
,
He
,
Z. Z.
,
Gao
,
Y. X.
, and
Liu
,
J.
,
2013
, “
Direct Desktop Printed-Circuits-on-Paper Flexible Electronics
,”
Sci. Rep.
,
3
(
5
), p.
01786
.
22.
Zhao
,
G. S.
,
2005
, “
Study on Designing and Preparation of Low-Cost Flexible Smart Label
,” Master's thesis, Dalian University of Technology, Dalian, China.
You do not currently have access to this content.