Multi-microchannel evaporators with flow boiling, used for cooling high heat flux devices, usually experience transient heat loads in practical applications. These transient processes may cause failure of devices due to a thermal excursion or poor local cooling or dryout. However, experimental studies on such transient thermal behavior of multi-microchannel evaporators during flow boiling are few. Thus, an extensive experimental study was conducted to investigate the base temperature response of multi-microchannel evaporators under transient heat loads, including cold startups and periodic step variations in heat flux using two different test sections and two coolants (R236fa and R245fa) for a wide variety of flow conditions. The effects on the base temperature behavior of the test section, heat flux magnitude, mass flux, inlet subcooling, outlet saturation temperature, and fluid were investigated. The transient base temperature response, monitored by an infrared (IR) camera, was recorded simultaneously with the flow regime acquired by a high-speed video camera. For cold startups, it was found that reducing the inlet orifice width, heat flux magnitude, inlet subcooling, and outlet saturation temperature but increasing the mass flux decreased the maximum base temperature. Meanwhile, the time required to initiate boiling increased with the inlet orifice width, mass flux, inlet subcooling, and outlet saturation temperature but decreased with the heat flux magnitude. For periodic variations in heat flux, the resulting base temperature was found to oscillate and then damp out along the flow direction. Furthermore, the effects of mass flux and heat flux pulsation period were insignificant.

References

References
1.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
2.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
3.
Thome
,
J. R.
,
2006
, “
State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
9
), pp.
4
19
.
4.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.
5.
Marzoa
,
M. G.
,
Battistin
,
M.
,
Bortolin
,
C.
,
Botelho Direito
,
J. A.
,
Da Riva
,
E.
,
Gargiulo
,
C.
,
Igolkin
,
S.
,
Ijzermans
,
P.
,
Lesenechal
,
Y.
,
Santoro
,
R.
, and
Thome
,
J. R.
,
2013
, “
Thermal Studies of an Ultra-Low-Mass Cooling System for the ALICE ITS Upgrade Project at CERN
,”
8th World Conference on Experimental Heat Transfer Fluid Mechanics and Thermodynamics
, Lisbon, Portugal, June 16–20, p. 121.
6.
Kandlikar
,
S. G.
,
2014
, “
Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024001
.
7.
Green
,
C.
,
Kottke
,
P.
,
Han
,
X.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.
8.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.
9.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5426
5442
.
10.
Costa-Patry
,
E.
,
2011
, “
Cooling High Heat Flux Micro-Electronic Systems Using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
11.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Fine-Resolution Two-Phase Flow Heat Transfer Coefficient Measurements of Refrigerants in Multi-Microchannel Evaporators
,”
Int. J. Heat Mass Transfer
,
67
, pp.
913
929
.
12.
Kim
,
S.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
627
652
.
13.
Huang
,
H.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2016
, “
Experimental Investigation on Flow Boiling Pressure Drop and Heat Transfer of R1233zd(E) in a Multi-Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
98
, pp.
596
610
.
14.
Huang
,
H.
,
Borhani
,
N.
,
Lamaison
,
N.
, and
Thome
,
J. R.
, “
Local Heat Transfer Data Reduction in Multi-Microchannel Evaporators Using Inverse Approach
,”
Int. J. Therm. Sci.
(in press).
15.
Chen
,
G.
, and
Cheng
,
P.
,
2009
, “
Nucleate and Film Boiling on a Microheater Under Pulse Heating in a Microchannel
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
391
396
.
16.
Chen
,
G.
,
Quan
,
X.
, and
Cheng
,
P.
,
2010
, “
Effects of Surfactant Additive on Flow Boiling Over a Microheater Under Pulse Heating
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1586
1590
.
17.
Basu
,
S.
,
Werneke
,
B.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2015
, “
Thermal Behavior of a Microdevice Under Transient Heat Loads
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1078
1087
.
18.
Basu
,
S.
,
Werneke
,
B.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2015
, “
Transient Microscale Flow Boiling Heat Transfer Characteristics of HFE-7000
,”
Int. J. Heat Mass Transfer
,
90
, pp.
396
405
.
19.
David
,
T.
,
Mendler
,
D.
,
Mosyak
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
Thermal Management of Time-Varying High Heat Flux Electronic Devices
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021003
.
20.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.
21.
Rao
,
S.
,
Houshmand
,
F.
, and
Peles
,
Y.
,
2014
, “
Transient Flow Boiling Heat-Transfer Measurements in Microdomains
,”
Int. J. Heat Mass Transfer
,
76
, pp.
317
329
.
22.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3275
3286
.
23.
Xu
,
J. L.
,
Gan
,
Y.
,
Zhang
,
D.
, and
Li
,
X.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
.
24.
Ribatski
,
G.
,
Zhang
,
W.
,
Consolini
,
L.
,
Xu
,
J.
, and
Thome
,
J. R.
,
2007
, “
On the Prediction of Heat Transfer in Micro-Scale Flow Boiling
,”
Heat Transfer Eng.
,
28
(
10
), pp.
842
851
.
25.
Borhani
,
N.
, and
Thome
,
J. R.
,
2010
, “
A Novel Time Strip Flow Visualisation Technique for Investigation of Intermittent Dewetting and Dryout in Elongated Bubble Flow in a Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4809
4818
.
26.
Ong
,
C.
,
Lamaison
,
N.
,
Marcinichen
,
J.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling, Part 1: Experimental Investigation
,” The Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), May 31–June 3, 2016, Las Vegas, NV.
27.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.
You do not currently have access to this content.