The phosphor dip-transfer coating method is simple and flexible for transferring a pre-analyzed volume of phosphor gel, which can be beneficial to the high angular color uniformity (ACU) of white light-emitting diodes (LEDs). The crux of this method is the volume control of the phosphor gel; however, the critical factors which influence the volume control remain unrevealed. In this paper, we concentrate on investigating the transferred volume in terms of three parameters: withdrawal speed, post radius, and dipping depth. Numerical simulations were carried out utilizing the volume of fluid (VOF) model combined with the dynamic mesh model. The experiments were also conducted on an optical platform equipped with a high-speed camera. The simulation results coincide well with the experimental results, with the maximum relative difference within 15%. The results show that the transferred volume increases with the increasing withdrawal speed and remains stable when the speed is greater than 1 mm/s, and it shows a linear relationship with the cube of post radius. And the transferred volume will increase with the dipping depth. Based on the experimental and numerically work, it is concluded that the volume of the pre-analyzed phosphor gel can be precisely obtained.

References

References
1.
Liu
,
S.
, and
Luo
,
X. B.
,
2011
,
LED Packaging for Lighting Applications: Design, Manufacturing, and Testing
,
Wiley
,
Hoboken, NJ
.
2.
Yuan
,
C.
,
Xie
,
B.
,
Huang
,
M. Y.
,
Wu
,
R. K.
, and
Luo
,
X. B.
,
2016
, “
Thermal Conductivity Enhancement of Platelets Aligned Composites With Volume Fraction From 10% to 20%
,”
Int. J. Heat Mass Transfer
,
94
, pp.
20
28
.
3.
Petroski
,
J.
,
2014
, “
Advanced Natural Convection Cooling Designs for Light-Emitting Diode Bulb Systems
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041005
.
4.
Yuan
,
C.
,
Li
,
L.
,
Duan
,
B.
,
Xie
,
B.
,
Zhu
,
Y. M.
, and
Luo
,
X. B.
,
2016
, “
Locally Reinforced Polymer-Based Composites for Efficient Heat Dissipation of Local Heat Source
,”
Int. J. Therm. Sci.
,
102
, pp.
202
209
.
5.
Lin
,
Y. C.
,
You
,
J. P.
,
Tran
,
N. T.
,
He
,
Y. Z.
, and
Shi
,
F. G.
,
2011
, “
Packaging of Phosphor Based High Power White LEDs: Effects of Phosphor Concentration and Packaging Configuration
,”
ASME J. Electron. Packag.
,
133
(
1
), p.
011009
.
6.
You
,
J. P.
,
Lin
,
Y. H.
,
Tran
,
N. T.
, and
Shi
,
F. G.
,
2010
, “
Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031010
.
7.
Zheng
,
H.
,
Ma
,
J. L.
, and
Luo
,
X. B.
,
2013
, “
Conformal Phosphor Distribution for White Lighting Emitting Diode Packaging by Conventional Dispensing Coating Method With Structure Control
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
3
), pp.
417
421
.
8.
Huang
,
H. T.
,
Tsai
,
C. C.
, and
Huang
,
Y. P.
,
2010
, “
Conformal Phosphor Coating Using Pulsed Spray to Reduce Color Deviation of White LEDs
,”
Opt. Express
,
18
(
102
), pp.
A201
A206
.
9.
Zheng
,
H.
,
Wang
,
Y. M.
,
Fu
,
X.
,
Liu
,
S.
, and
Luo
,
X. B.
,
2013
, “
Conformal Phosphor Coating for Phosphor-Converted White LEDs on Basis of Dispensing Process
,”
14th International Conference on Electronic Packaging Technology
(
ICEPT
), Dalian, China, Aug. 11–14, pp.
1138
1141
.
10.
Zheng
,
H.
,
Liu
,
S.
, and
Luo
,
X. B.
,
2013
, “
Enhancing Angular Color Uniformity of Phosphor-Converted White Light-Emitting Diodes by Phosphor Dip-Transfer Coating
,”
IEEE J. Lightwave Technol.
,
31
(
12
), pp.
1987
1993
.
11.
Zheng
,
H.
,
Wang
,
Y. M.
,
Li
,
L.
,
Fu
,
X.
,
Zou
,
Y.
, and
Luo
,
X. B.
,
2013
, “
Dip-Transfer Phosphor Coating on Designed Substrate Structure for High Angular Color Uniformity of White Light Emitting Diodes With Conventional Chips
,”
Opt. Express
,
21
(
S6
), pp.
933
941
.
12.
Darhuber
,
A. A.
,
Troian
,
S. M.
,
Davis
,
J. M.
,
Miller
,
S. M.
, and
Wagner
,
S.
,
2000
, “
Selective Dip-Transfer Coating of Chemically Micropatterned Surfaces
,”
J. Appl. Phys.
,
88
(
9
), pp.
5119
5126
.
13.
Vega
,
E. J.
,
Montanero
,
J. M.
,
Herrada
,
M. A.
, and
Ferrera
,
C.
,
2014
, “
Dynamics of an Axisymmetric Liquid Bridge Close to the Minimum-Volume Stability Limit
,”
Phys. Rev. E
,
90
(
1
), p.
013015
.
14.
Kumar
,
S.
,
2015
, “
Liquid Transfer in Printing Processes: Liquid Bridges With Moving Contact Lines
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
67
94
.
15.
Lian
,
G.
,
Thornton
,
C.
, and
Adams
,
M. J.
,
1993
, “
A Theoretical Study of the Liquid Bridge Forces Between Two Rigid Spherical Bodies
,”
J. Colloid Interface Sci.
,
161
(
1
), pp.
138
147
.
16.
Pitois
,
O.
,
Moucheront
,
P.
, and
Chateau
,
X.
,
2000
, “
Liquid Bridge Between Two Moving Spheres: An Experimental Study of Viscosity Effects
,”
J. Colloid Interface Sci.
,
231
(
1
), pp.
26
31
.
17.
Gao
,
S. Q.
,
Jin
,
L.
,
Du
,
J. Q.
, and
Liu
,
H. P.
,
2011
, “
The Liquid-Bridge With Large Gap in Micro Structural Systems
,”
J. Mod. Phys.
,
2
(
5
), pp.
404
415
.
18.
Zhang
,
X.
,
1999
, “
Dynamics of Drop Formation in Viscous Flows
,”
Chem. Eng. Sci.
,
54
(
12
), pp.
1759
1774
.
19.
Huang
,
W. X.
,
Lee
,
S. H.
,
Sung
,
H. J.
,
Lee
,
T. M.
, and
Kim
,
D. S.
,
2008
, “
Simulation of Liquid Transfer Between Separating Walls for Modeling Micro-Gravure-Offset Printing
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1436
1446
.
20.
Liu
,
X. Y.
,
Chen
,
W.
,
Liu
,
L. J.
, and
Liu
,
D. W.
,
2013
, “
The Numerical Simulation of Oil-Water Two Phase Flow in Horizontal Pipeline Based on the VOF Model
,”
7th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion
(
ISMF 2012
), Xi'an, China, Oct. 26–30, Vol.
1547
(
1
), pp.
741
745
.
21.
Caviezel
,
D.
,
Narayanan
,
C.
, and
Lakehal
,
D.
,
2008
, “
Adherence and Bouncing of Liquid Droplets Impacting on Dry Surfaces
,”
Microfluid. Nanofluid.
,
5
(
4
), pp.
469
478
.
22.
Jang
,
Y. H.
,
Lee
,
K.
, and
Kim
,
Y. K.
,
2012
, “
Controlled Volume Transfer and Lens Shape Formation by Liquid Bridge Disconnection
,”
Appl. Phys. Lett.
,
100
(
21
), p.
214103
.
23.
Krechetnikov
,
R.
, and
Homsy
,
G. M.
,
2005
, “
Experimental Study of Substrate Roughness and Surfactant Effects on the Landau-Levich Law
,”
Phys. Fluids
,
17
(
10
), p.
102108
.
You do not currently have access to this content.