A series of dwell-fatigue tests were conducted on nanosilver sintered lap shear joint at elevated temperatures from 125 °C to 325 °C. The effects of temperature and loading conditions on dwell-fatigue behavior of nanosilver sintered lap shear joint were systematically studied. With higher temperature and longer dwell time, creep played a more important part in dwell-fatigue tests. Creep strain accumulated during maximum shear stress hold was found partly recovered by the subsequent cyclic unloading. Both the fracture mode and silver particle growth pattern were characterized by X-ray tomography system and scanning electron microscope (SEM). The mean shear strain rate γ˙m synthesized the effects of various factors, such as temperature, shear stress amplitude, mean shear stress, and dwell time, by which the fatigue and dwell-fatigue life of nanosilver sintered lap shear joint could be well predicted within a factor of two.

References

References
1.
Fakpan
,
K.
,
Ostuka
,
Y.
,
Mutoh
,
Y.
,
Inoue
,
S.
,
Nagata
,
K.
, and
Kodani
,
K.
,
2012
, “
Creep–Fatigue Crack Growth Behavior of Pb-Containing and Pb-Free Solders at Room and Elevated Temperatures
,”
J. Electron. Mater.
,
41
(
9
), pp.
2463
2469
.
2.
Choudhury
,
S. F.
, and
Ladani
,
L.
,
2015
, “
Effect of Intermetallic Compounds on the Thermomechanical Fatigue Life of Three-Dimensional Integrated Circuit Package Microsolder Bumps: Finite Element Analysis and Study
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041003
.
3.
Ohguchi
,
K.
, and
Sasaki
,
K.
,
2010
, “
Time-Independent and Time-Dependent Inelastic Strain Analysis of Lead-Free Solder by Cyclic Loading Test Using Stepped Ramp Waves
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041003
.
4.
Tanaka
,
K.
,
2010
, “
Creep–Fatigue Crack Propagation in Lead-Free Solder under Cyclic Loading With Various Waveform
,”
Eng. Fract. Mech.
,
77
(
11
), pp.
1750
1762
.
5.
Jong
,
W. R.
,
Tsai
,
H. C.
,
Chang
,
H. T.
, and
Peng
,
S. H.
,
2008
, “
The Effects of Temperature Cyclic Loading on Lead-Free Solder Joints of Wafer Level Chip Scale Package by Taguchi Method
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
011001
.
6.
Lall
,
P.
,
Shantaram
,
S.
,
Suhling
,
J.
, and
Locker
,
D.
,
2015
, “
Stress–Strain Behavior of SAC305 at High Strain Rates
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011010
.
7.
Zhang
,
Y. M.
,
Zhu
,
H. L.
,
Fujiwara
,
M.
,
Xu
,
J. Q.
, and
Dao
,
M.
,
2013
, “
Low-Temperature Creep of SnPb and SnAgCu Solder Alloys and Reliability Prediction in Electronic Packaging Modules
,”
Scr. Mater.
,
68
(
8
), pp.
607
610
.
8.
Cadek
,
J.
,
1988
,
Creep in Metallic Materials
,
Elsevier
,
Amsterdam
.
9.
Kassner
,
M. E.
, and
Perez-Prado
,
M. T.
,
2004
,
Fundamentals of Creep in Metals and Alloys
,
Elsevier
,
Amsterdam
.
10.
Qasaimeh
,
A.
,
Hamasha
,
S.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Damage Evolution in Lead Free Solder Joints in Isothermal Fatigue
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021012
.
11.
Tsukada
,
Y.
,
Nishimura
,
H.
,
Yamamoto
,
H.
, and
Sakane
,
M.
,
2005
, “
A Strain Rate Ratio Approach for Assessing Creep-Fatigue Life of 63Sn-37Pb Solder Under Shear Loading
,”
ASME J. Electron. Packag.
,
127
(
4
), pp.
407
414
.
12.
Yamamoto
,
T.
,
Itoh
,
T.
,
Sakane
,
M.
, and
Tsukada
,
Y.
,
2012
, “
Creep–Fatigue Life of Sn–8Zn–3Bi Solder Under Multiaxial Loading
,”
Int. J. Fatigue
,
43
, pp.
235
241
.
13.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
14.
Nozaki
,
M.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
,
2005
, “
Creep-Fatigue Life Evaluation for Sn-3.5Ag Solder
,”
ASME J. Eng. Mater. Technol.
,
128
(
2
), pp.
145
150
.
15.
Zhang
,
X. P.
,
Yu
,
C. B.
,
Shrestha
,
S.
, and
Dorn
,
L.
,
2007
, “
Creep and Fatigue Behaviors of the Lead-Free Sn–Ag–Cu–Bi and Sn60Pb40 Solder Interconnections at Elevated Temperatures
,”
J. Mater. Sci: Mater. Electron.
,
18
(
6
), pp.
665
670
.
16.
Kariya
,
Y.
,
Kanda
,
Y.
,
Iguchi
,
K.
, and
Furusawa
,
H.
,
2010
, “
Influence of Temperature and Dwelling Time on Low-Cycle Fatigue Characteristic of Isotropic Conductive Adhesive Joint
,”
Mater. Trans.
,
51
(
10
), pp.
1779
1784
.
17.
Woo
,
T. W.
,
Sakane
,
M.
,
Kobayashi
,
K.
,
Park
,
H. C.
, and
Kim
,
K. S.
,
2010
, “
Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder
,”
J. Microelectron. Packag. Soc.
,
17
(
3
), pp.
33
41
.
18.
Zhou
,
Y. X.
,
Li
,
X. Y.
,
Wang
,
C.
, and
Gao
,
R. T.
,
2015
, “
A New Creep–Fatigue Life Model of Lead-Free Solder Joint
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1097
1100
.
19.
Zhang
,
Q. K.
, and
Zhang
,
Z. F.
,
2011
, “
In Situ Observations on Creep Fatigue Fracture Behaivor of Sn–4Ag/Cu Solder Joints
,”
Acta Mater.
,
59
(
15
), pp.
6017
6028
.
20.
Sharma
,
P.
, and
Dasgupta
,
A.
,
2002
, “
Micro-Mechanics of Creep-Fatigue Damage in PB-SN Solder Due to Thermal Cycling—Part I: Formulation
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
292
297
.
21.
Yu
,
D. J.
,
Chen
,
X.
,
Chen
,
G.
,
Lu
,
G. Q.
, and
Zhang
,
Z. Q.
,
2009
, “
Applying Anand Model to Low-Temperature Sintered Nanoscale Silver Paste Chip Attachment
,”
Mater. Des.
,
30
(
10
), pp.
4574
4579
.
22.
Li
,
X.
,
Chen
,
G.
,
Wang
,
L.
,
Mei
,
Y. H.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2013
, “
Creep Properties of Low-Temperature Sintered Nano-Silver Lap Shear Joints
,”
Mater. Sci. Eng. A
,
579
, pp.
108
113
.
23.
Scola
,
J.
,
Tassart
,
X.
,
Vilar
,
C.
,
Jomard
,
F.
,
Dumas
,
E.
,
Veniaminova
,
Y.
,
Boullay
,
P.
, and
Gascoin
,
S.
,
2015
, “
Microstructure and Electrical Resistance Evolution During Sintering of a Ag Nanoparticle Paste
,”
J. Phys. D: Appl. Phys.
,
48
(
14
), p.
145302
.
24.
Tan
,
Y. S.
,
Li
,
X.
,
Chen
,
G.
,
Mei
,
Y. H.
, and
Chen
,
X.
,
2015
, “
Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep
,”
J. Electron. Mater.
,
44
(
2
), pp.
761
769
.
25.
Zhang
,
Z. Y.
, and
Lu
,
G. Q.
,
2002
, “
Pressure-Assisted Low-Temperature Sintering of Silver Paste as an Alternative Die-Attach Solution to Solder Reflow
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
(
4
), pp.
279
283
.
26.
Wang
,
T.
,
Chen
,
X.
,
Lu
,
G. Q.
, and
Lei
,
G.
,
2007
, “
Low-Temperature Sintering With Nano Silver Paste in Die-Attached Interconnection
,”
J. Electron. Mater
,
36
(
10
), pp.
1333
1340
.
27.
Knoerr
,
M.
,
Kraft
,
S.
, and
Schletz
,
A.
, “
Reliability Assessment of Sintered Nano-Silver Die Attachment for Power Semiconductors
,”
12th Electronics Packaging Technology Conference
, Singapore, Dec. 8–10, pp. 56–61.
28.
Wang
,
T.
,
Chen
,
G.
,
Wang
,
Y. P.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2010
, “
Uniaxial Ratcheting and Fatigue Behaviors of Low-Temperature Sintered Nano-Scale Silver Paste at Room and High Temperatures
,”
Mater. Sci. Eng. A
,
527
, pp.
6714
6722
.
29.
Chen
,
G.
,
Yu
,
L.
,
Mei
,
Y. H.
,
Li
,
X.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2014
, “
Uniaxial Ratcheting Behavior of Sintered Nanosilver Joint for Electronic Packaging
,”
Mater. Sci. Eng. A
,
591
, pp.
121
129
.
30.
Tan
,
Y. S.
,
Li
,
X.
, and
Chen
,
X.
,
2014
, “
Fatigue and Dwell-Fatigue Behavior of Nano-Silver Sintered Lap-Shear Joint at Elevated Temperature
,”
Microelectron. Reliab.
,
54
(
3
), pp.
648
654
.
31.
Chen
,
G.
,
Zhang
,
Z. S.
,
Mei
,
Y.-H.
,
Li
,
X.
,
Yu
,
D.-J.
,
Wang
,
L.
, and
Chen
,
X.
,
2014
, “
Applying Viscoplastic Constitutive Models to Predict Ratcheting Behavior of Sintered Nanosilver Lap-Shear Joint
,”
Mech. Mater.
,
72
, pp.
61
71
.
32.
Wakai
,
F.
,
Yoshida
,
M.
,
Shinoda
,
Y.
, and
Akatsu
,
T.
,
2005
, “
Coarsening and Grain Growth in Sintering of Two Particles of Different Sizes
,”
Acta Mater.
,
53
(
5
), pp.
1361
1371
.
33.
German
,
R. M.
,
1985
,
Liquid Phase Sintering
,
Plenum Press
,
New York
, pp.
122
189
.
34.
Fu
,
S. C.
,
Mei
,
Y. H.
,
Lu
,
G. Q.
,
Li
,
X.
,
Chen
,
G.
, and
Chen
,
X.
,
2014
, “
Pressureless Sintering of Nanosilver Paste at Low Temperature to Join Large Area Power Chips for Electronic Packaging
,”
Mater. Lett.
,
128
, pp.
42
45
.
35.
Gao
,
H.
, and
Chen
,
X.
,
2009
, “
Effect of Axial Ratcheting Deformation on Torsional Low Cycle Fatigue Life of Lead-Free Solder Sn–3.5Ag
,”
Int. J. Fatigue.
,
31
(
2
), pp.
276
283
.
36.
Fan
,
Z. C.
,
Chen
,
X. D.
,
Chen
,
L.
, and
Jiang
,
J. L.
,
2007
, “
Fatigue–Creep Behavior of 1.25Cr0.5Mo Steel at High Temperature and Its Life Prediction
,”
Int. J. Fatigue.
,
29
(
6
), pp.
1174
1183
.
You do not currently have access to this content.