Sintered silver joint is a porous silver that bonds a semiconductor die to the substrate as part of the packaging process. Sintered Ag is one of the few possible bonding methods to fulfill the operating conditions of wide band-gap (WBG) power device technologies. We review the current technology development of sintered Ag as a bonding material from the perspective of patents filed by various stakeholders since late 1980s. This review addresses the formulation of sintered pastes (i.e., nano-Ag, hybrid Ag, and micron Ag fillers), innovations in the process and equipment to form this Ag joint. This review will provide the insights and confidence to engineers, scientists from universities and industry as well as investors who are developing and commercializing the sintered Ag as a bonding material for microelectronic packaging.

References

References
1.
Layani
,
M.
, and
Magdassi
,
S.
,
2011
, “
Flexible Transparent Conductive Coatings by Combining Self-Assembly With Sintering of Silver Nanoparticles Performed at Room Temperature
,”
J. Mater. Chem.
,
21
(
39
), pp.
15378
15382
.
2.
Peng
,
P.
,
Hu
,
A.
,
Gerlich
,
A. P.
,
Zou
,
G.
,
Liu
,
L.
, and
Zhou
,
Y. N.
,
2015
, “
Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications
,”
ACS Appl. Mater. Interface
,
7
(
23
), pp.
12597
12618
.
3.
Siow
,
K. S.
,
2012
, “
Mechanical Properties of Nano-Ag as Die Attach Materials
,”
J. Alloys Compd.
,
514
(
c
), pp.
6
14
.
4.
Siow
,
K. S.
,
2014
, “
Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?
,”
J. Electron. Mater.
,
43
(
4
), pp.
947
961
.
5.
Khazaka
,
R.
,
Mendizabal
,
L.
, and
Henry
,
D.
,
2014
, “
Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability
,”
J. Electron. Mater.
,
43
(
7
), pp.
2459
2466
.
6.
Siemens
,
1987
, “
Method of Securing Electronic Components to a Substrate
,” U.S. Patent No. US4810672B2.
7.
Zuruzi
,
A. S.
,
Lahiri
,
S. K.
,
Burman
,
P.
, and
Siow
,
K. S.
,
2001
, “
Correlation Between Intermetallic Thickness and Roughness During Solder Reflow
,”
J. Electron. Mater.
,
30
(
8
), pp.
997
1000
.
8.
Pang
,
H. L. J.
,
Tan
,
K. H.
,
Shi
,
X. Q.
, and
Wang
,
Z. P.
,
2001
, “
Microstructure and Intermetallic Growth Effects on Shear and Fatigue Strength of Solder Joints Subjected to Thermal Cycling Aging
,”
Mater. Sci. Eng. A
,
307
(
1–2
), pp.
42
50
.
9.
Che
,
F. X.
, and
Pang
,
J. H. L.
,
2012
, “
Characterization of IMC Layer and Its Effect on Thermomechanical Fatigue Life of Sn-3.8Ag-0.7Cu Solder Joints
,”
J. Alloys Compd.
,
541
, pp.
6
13
.
10.
Buttay
,
C.
,
Planson
,
D.
,
Allard
,
B.
,
Bergogne
,
D.
,
Bevilacqua
,
P.
,
Joubert
,
C.
,
Lazar
,
M.
,
Martin
,
C.
,
Morel
,
H.
,
Tournier
,
D.
, and
Raynaud
,
C.
,
2011
, “
State of the Art of High Temperature Power Electronics
,”
Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol.
,
176
(
4
), pp.
283
288
.
11.
Wang
,
T.
,
Zhao
,
M.
,
Chen
,
X.
,
Lu
,
G. Q.
,
Ngo
,
K.
, and
Luo
,
S.
,
2012
, “
Shrinkage and Sintering Behavior of a Low-Temperature Sinterable Nanosilver Die-Attach Paste
,”
J. Electron. Mater.
,
41
(
9
), pp.
2543
2552
.
12.
Schmitt
,
W.
,
2010
, “
Novel Silver Contact Paste Lead Free Solution for Die Attach
,”
6th International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 16–18.
13.
Fu
,
S.
,
Mei
,
Y.
,
Li
,
X.
,
Ning
,
P.
, and
Lu
,
G. Q.
,
2015
, “
Parametric Study on Pressureless Sintering of Nanosilver Paste to Bond Large-Area (≥100 mm2) Power Chips at Low Temperatures for Electronic Packaging
,”
J. Electron. Mater.
,
44
(
10
), pp.
3973
3984
.
14.
Egelkraut
,
S.
,
Frey
,
L.
,
Knoerr
,
M.
, and
Schletz
,
A.
,
2010
, “
Evolution of Shear Strength and Microstructure of Die Bonding Technologies for High Temperature Applications During Thermal Aging
,”
12th Electronic Packaging Technology Conference
(
EPTC
), Singapore, Dec. 8–10, pp.
660
667
.
15.
Khazaka
,
R.
,
Thollin
,
B.
,
Mendizabal
,
L.
,
Henry
,
D.
,
Khazaka
,
R.
, and
Hanna
,
R.
,
2015
, “
Characterization of Nanosilver Dry Films for High-Temperature Applications
,”
IEEE Trans. Device Mater. Reliab.
,
15
(
2
), pp.
149
155
.
16.
Paknejad
,
S.
,
Dumas
,
G.
,
West
,
G.
,
Lewis
,
G.
, and
Mannan
,
S.
,
2014
, “
Microstructure Evolution During 300 °C Storage of Sintered Ag Nanoparticles on Ag and Au Substrates
,”
J. Alloy Compd.
,
617
, pp.
994
1001
.
17.
Fang
,
Y.
,
Johnson
,
R. W.
, and
Hamilton
,
M. C.
,
2015
, “
Pressureless Sintering of Microscale Silver Paste for 300 C Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
5
(
9
), pp.
1258
1264
.
18.
Chen
,
S.
,
Fan
,
G.
,
Yan
,
X.
,
LaBarbera
,
C.
,
Kresge
,
L.
, and
Lee
,
N. C.
,
2015
, “
Achieving High Reliability Via Pressureless Sintering of Nano-Ag Paste for Die-Attach
,”
16th International Conference on Electronic Packaging Technology
(
ICEPT
), Changsha, China, Aug. 11–14, pp.
367
374
.
19.
Morita
,
T.
,
Ide
,
E.
,
Yasuda
,
Y.
,
Hirose
,
A.
, and
Kobayashi
,
K.
,
2008
, “
Study of Bonding Technology Using Silver Nanoparticles
,”
Jpn. J. Appl. Phys. Part 1
,
47
(
8 PART 1
), pp.
6615
6622
.
20.
Chua
,
S.
,
Siow
,
K.
, and
Jalar
,
A.
,
2016
, “
Microstructural Studies and Bonding Strength of Presssureless Sintered Nano-Silver Joints on Silver, Direct Bond Copper (DBC) and Copper Substrates at 300 °C
,”
J. Alloy Compd.
(submitted).
21.
Wang
,
L.
,
2015
, “
Low Temperature Hermertic Packaging With Ag Sintering Process
,”
16th International Conference on Electronic Packaging Technology
(
ICEPT
), Changsha, China, Aug. 11–14, pp.
1317
1320
.
22.
Zheng
,
H.
,
Berry
,
D.
,
Ngo
,
K. D.
, and
Lu
,
G. Q.
,
2014
, “
Chip-Bonding on Copper by Pressureless Sintering of Nanosilver Paste Under Controlled Atmosphere.
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
377
384
.
23.
Hausner
,
S.
,
Weiss
,
S.
,
Wielage
,
B.
, and
Wagner
,
G.
,
2015
, “
Joining of Copper at Low Temperatures Using Ag Nanoparticles: Influence of Process Parameters on Mechanical Strength
,”
International Brazing & Soldering Conference
(
IBSC 2015
), Long Beach, CA, Apr. 19–22.
24.
Fu
,
S.
,
Mei
,
Y.
,
Li
,
X.
,
Ning
,
P.
, and
Lu
,
G. Q.
,
2015
, “
Parametric Study on Pressureless Sintering of Nanosilver Paste to Bond Large-Area (≥100 mm2) Power Chips at Low Temperatures for Electronic Packaging
,”
J. Electron. Mater.
,
44
(
10
), pp.
3973
3984
.
25.
Schmitt
,
W.
,
2010
, “
New Silver Contact Pastes From High Pressure Sintering to Low Pressure Sintering
,”
3rd Electronic System-Integrated Technology Conference
(
ESTC
), Berlin, Germany, Sept. 13–16.
26.
Knoerr
,
M.
, and
Schletz
,
A.
,
2010
, “
Power Semiconductor Joining Through Sintering of Silver Nanoparticles: Evaluation of Influence of Parameters Time, Temperature and Pressure on Density, Strength and Reliability
,”
6th International Conference on Integrated Power Electronic Systems
(
CIPS
),
Nuremburg
,
Germany
, Mar. 16–18.
27.
Wei
,
Z.
,
Zhou
,
M.
,
Qiao
,
H.
,
Zhu
,
L.
,
Yang
,
H.
, and
Xia
,
T.
,
2009
, “
Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma
,”
J. Nanomater.
,
2009
, p.
968058
.
28.
Skandan
,
G.
,
1995
, “
Processing of Nanostructured Zirconia Ceramics
,”
Nanostruct. Mater.
,
5
(
2
), pp.
111
126
.
29.
Mackenzie
,
J. K.
, and
Shuttleworth
,
R.
,
1949
, “
A Phenomenological Theory of Sintering
,”
Proc. Phys. Soc. Sect. B
,
62
(
12
), pp.
833
852
.
30.
Hitachi Ltd.
,
2008
, “
Method for Mounting an Electronic Part on a Substrate Using a Liquid Containing Metal Particles
,” U.S. Patent No. US7393771B2.
31.
Tanaka Kikinzoku
,
2005
, “
Metal Paste and Film Formation Method Using the Same
,” U.S. Patent No. US20050127332A1.
32.
Tanaka Kikinzoku
,
2010
, “
Method of Bonding
,” U.S. Patent No. US7789287B2.
33.
Applied Nanoparticle Laboratory Chip, Nihon Superior
,
2015
, “
Oxygen Source-Containing Composite Nanometal Paste and Joining Method
,” U.S. Patent No. US20150037197A1.
34.
Heraeus
,
2015
, “
Metal Paste With Oxidizing Agents
,” U.S. Patent No. US8950652B2.
35.
Herboth
,
T.
,
Fruh
,
C.
,
Gunther
,
M.
, and
Wilde
,
J.
,
2012
, “
Assessment of Thermo-Mechanical Stresses in Low Temperature Joining Technology
,” 13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Cascais, Portugal, Apr. 16–18, pp.
1/7
7/7
.
36.
Siemens
,
1987
, “
Method for Fastening Electronic Components to a Substrate Using a Film
,” U.S. Patent No. US4856185A.
37.
Virginia Tech Intell Prop
,
2012
, “
Nanoscale Metal Paste for Interconnect and Method of Use
,” U.S. Patent No. US8257795B2.
38.
Heraeus Deutschland
,
2015
, “
Contacting Means and Method for Contacting Electrical Components
,” U.S. Patent No. US8925789B2.
39.
Henkel
,
2015
, “
Metal Sintering Film Compositions
,” U.S. Patent No. WO/2015/034579.
40.
Alpha Metals and Setna Rohan
,
2014
, “
Sintering Powder
,” U.S. Patent No. WO/2014/068299.
41.
Int Rectifier
,
2012
, “
Porous Metallic Fim as Die Attach and Interconnect
,” U.S. Patent No. US20130256894A1.
42.
Kim
,
M. S.
, and
Nishikawa
,
H.
,
2014
, “
Silver Nanoporous Sheet for Solid-State Die Attach in Power Device Packaging
,”
Scr. Mater.
,
92
, pp.
43
46
.
43.
Alpha Metals
,
2015
, “
Composite and Multilayered Silver Films for Joining Electrical and Mechanical Components
,” U.S. Patent No. WO/2015/031801.
44.
Hitachi Chem.
,
2015
, “
Silver Paste Composition and Semiconductor Device Using Same
,” U.S. Patent No. US20150217411A1.
45.
Hitachi
,
2014
, “
Bonding Method and Bonding Material Using Metal Particle
,” U.S. Patent No. US8821768B1.
46.
Virginia Tech Intell Prop
,
2005
, “
Nano-Metal Composite Made by Deposition From Colloidal Suspensions
,” U.S. Patent No. US20050127134A1.
47.
Meschi Amoli
,
B.
,
Hu
,
A.
,
Zhou
,
N. Y.
, and
Zhao
,
B.
,
2015
, “
Recent Progresses on Hybrid Micro–Nano Filler Systems for Electrically Conductive Adhesives (ECAs) Applications
,”
J. Mater. Sci. Mater. Electron.
,
26
(
7
), pp.
4730
4745
.
48.
Applied Nanoparticle Laboratory and Toyota Motor
,
2013
, “
Three-Metallic-Component Type Composite Nanometallic Paste, Method of Bonding, and Electronic Component
,” U.S. Patent No. US8497022B2.
49.
Morisada
,
Y.
,
Nagaoka
,
T.
,
Fukusumi
,
M.
,
Kashiwagi
,
Y.
,
Yamamoto
,
M.
,
Nakamoto
,
M.
,
Kakiuchi
,
H.
, and
Yoshida
,
Y.
,
2011
, “
A Low-Temperature Pressureless Bonding Process Using a Trimodal Mixture System of Ag Nanoparticles
,”
J. Electron. Mater.
,
40
(
12
), pp.
2398
2402
.
50.
Kiełbasiński
,
K.
,
Szałapak
,
J.
,
Jakubowska
,
M.
,
Młozniak
,
A.
,
Zwierkowska
,
E.
,
Krzemiński
,
J.
, and
Teodorczyk
,
M.
,
2015
, “
Influence of Nanoparticles Content in Silver Paste on Mechanical and Electrical Properties of LTJT Joints
,”
Adv. Powder Technol.
,
26
(
3
), pp.
907
913
.
51.
Samsung Electro Mech.
,
2014
, “
Power Module Using Sintering Die Attach and Manufacturing Method Thereof
,” U.S. Patent No. US8630097B2.
52.
Samsung Electro Mech.
,
2012
, “
Conductive Metal Paste Composition and Method of Manufacturing the Same
,” U.S. Patent No. US20120219787A1.
53.
Baker Hughes Inc.
,
2011
, “
Method and Apparatus for Joining Members for Downhole and High Temperature Applications
,” U.S. Patent No. US20120292009A1.
54.
Brouwers
,
H.
,
2006
, “
Particle-Size Distribution and Packing Fraction of Geometric Random Packings
,”
Phys. Rev. E
,
74
(
3
), p.
031309
.
55.
Suganuma
,
K.
,
Sakamoto
,
S.
,
Kagami
,
N.
,
Wakuda
,
D.
,
Kim
,
K. S.
, and
Nogi
,
M.
,
2011
, “
Low-Temperature Low-Pressure Die Attach With Hybrid Silver Particle Paste
,”
Microelectron. Reliab.
,
52
(
2
), pp.
375
380
.
56.
Göbl
,
C.
, and
Beckedahl
,
P.
,
2008
, “
A New 3D Power Module Packaging Technology Without Bondwires
,”
International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
(
PCIM Europe 2008
), Nuremberg, Germany, May 27–29, pp.
561
566
.
57.
Heraeus
,
2009
, “
Process and Paste for Contacting Metal Surfaces
,” U.S. Patent No. US20090134206A1.
58.
Nichia
,
2015
, “
Method for Producing Conductive Material, Conductive Material Obtained by the Method, Electronic Device Containing the Conductive Material, Light-Emitting Device, and Method for Producing Light-Emitting Device
,” U.S. Patent No. US8968608B2.
59.
Henkel
,
2015
, “
Sinterable Silver Flake Adhesive for Use in Electronics
,” U.S. Patent No. US8974705B2.
60.
Henkel
,
2015
, “
Sinterable Metal Particles and the Use Thereof in Electronics Applications
,” U.S. Patent No. WO/2015/126807.
61.
Kaken Tech
,
2015
, “
Conductive Paste and Die Bonding Method
,” U.S. Patent No. US20150115018A1.
62.
Scola
,
J.
,
Tassart
,
X.
,
Vilar
,
C.
,
Jomard
,
F.
,
Dumas
,
E.
,
Veniaminova
,
Y.
,
Boullay
,
P.
, and
Gascoin
,
S.
,
2015
, “
Microstructure and Electrical Resistance Evolution During Sintering of a Ag Nanoparticle Paste
,”
J. Phys. D: Appl. Phys.
,
48
(
14
), p.
145302
.
63.
Heraeus
2015
, “
Metal Paste With Co-Precursors
,” U.S. Patent No. US8950653B2.
64.
Hitachi Chem.
,
2011
, “
Adhesive Composition and Semiconductor Device Using the Same
,” U.S. Patent No. US20130183535A1.
65.
Henkel
,
2014
, “
Silver Sintering Compositions With Fluxing or Reducing Agents for Metal Adhesion
,” U.S. Patent No. US20140030509A1.
66.
Infineon Tech.
,
2008
, “
Module Including a Sintered Joint Bonding a Semiconductor Chip
,” U.S. Patent No. US8253233B2.
67.
Robert Bosch
,
2013
, “
Starting Material and Process for Producing a Sintered Joint
,” U.S. Patent No. US20130216848A1.
68.
Zhang
,
H.
,
Nagao
,
S.
, and
Suganuma
,
K.
,
2015
, “
Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag
,”
J. Electron. Mater.
,
44
(
10
), pp.
3896
3903
.
69.
Heuck
,
N.
,
Langer
,
A.
,
Stranz
,
A.
,
Palm
,
G.
,
Sittig
,
R.
,
Bakin
,
A.
, and
Waag
,
A.
,
2011
, “
Analysis and Modeling of Thermomechanically Improved Silver-Sintered Die-Attach Layers Modified by Additives
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
11
), pp.
1846
1855
.
70.
Zabihzadeh
,
S.
,
Van Petegem
,
S.
,
Duarte
,
L. I.
,
Mokso
,
R.
,
Cervellino
,
A.
, and
Van Swygenhoven
,
H.
,
2015
, “
Deformation Behavior of Sintered Nanocrystalline Silver Layers
,”
Acta Mater.
,
97
, pp.
116
123
.
71.
Alayli
,
N.
,
Schoenstein
,
F.
,
Girard
,
A.
,
Tan
,
K. L.
, and
Dahoo
,
P. R.
,
2014
, “
Spark Plasma Sintering Constrained Process Parameters of Sintered Silver Paste for Connection in Power Electronic Modules: Microstructure, Mechanical and Thermal Properties
,”
Mater. Chem. Phys.
,
148
(
1–2
), pp.
125
133
.
72.
Indium Corp.
,
2015
, “
Indium Corp. Indalloy® 151 Pb-Sn-Ag Solder Alloy
,”
MatWeb
LLC, Blacksburg, VA.
73.
Youssef
,
T.
,
Rmili
,
W.
,
Woirgard
,
E.
,
Azzopardi
,
S.
,
Vivet
,
N.
,
Martineau
,
D.
,
Meuret
,
R.
,
Le Quilliec
,
G.
, and
Richard
,
C.
,
2015
, “
Power Modules Die Attach: A Comprehensive Evolution of the Nanosilver Sintering Physical Properties Versus Its Porosity
,”
Microelectron. Reliab.
,
55
(
9–10
), pp.
1997
2002
.
74.
Wereszczak
,
A. A.
,
Vuono
,
D. J.
,
Wang
,
H.
,
Ferber
,
M. K.
, and
Liang
,
Z.
,
2012
, “
Properties of Bulk Sintered Silver as a Function of Porosity
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL
/TM-2012/130.
75.
Namics
,
2015
, “
Conductive Paste and Method for Producing a Semiconductor Device Using the Same
,” U.S. Patent No. WO/2015/108205.
76.
Infineon Tech
,
2014
, “
Semiconductor Device Including Diffusion Soldered Layer on Sintered Silver Layer
,” U.S. Patent No. US8736052B2.
77.
Toyoda Gosei Co.
,
2014
, “
Method for Mounting Luminescent Device
,” U.S. Patent No. US8852970B2.
78.
Ixys
,
2014
, “
Solderless Die Attach to a Direct Bonded Aluminum Substrate
,” U.S. Patent No. US8716864B2.
79.
Ixys
,
2014
, “
Power MOSFET Having Selectively Silvered Pads for Clip and Bond Wire Attach
,” U.S. Patent No. US8653667B2.
80.
Infineon Tech
,
1999
, “
Pressure Sintering Method for Fastening Electronic Components on a Substrate
,” U.S. Patent No. US5893511B2.
81.
Kuramoto
,
M.
,
Kunimune
,
T.
,
Ogawa
,
S.
,
Niwa
,
M.
,
Kim
,
K. S.
, and
Suganuma
,
K.
,
2012
, “
Low Temperature and Pressureless Ag-Ag Direct Bonding for Light Emitting Diode Die-Attachment
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
4
), pp.
548
552
.
82.
Nichia
,
2015
, “
Semiconductor Device and Production Method Therefor
,” U.S. Patent No. US8927341B2.
83.
Nichia
,
2014
, “
Light Emitting Semiconductor Element Bonded to a Base by a Silver Coating
,” U.S. Patent No. US8836130B2.
84.
Heuck
,
N.
,
Palm
,
G.
,
Sauerberg
,
T.
,
Stranz
,
A.
,
Waag
,
A.
, and
Bakin
,
A.
,
2010
, “
SiC Die-Attachment for High Temperature Applications
,”
Mater. Sci. Forum
,
645–648
, pp.
741
744
.
85.
Texas Instruments Inc.
,
2015
, “
Embedded Silver Nanomaterials Into Die Backside to Enhance Package Performance and Reliability
,” U.S. Patent No. US20150069600A1.
86.
Infineon Tech
,
2010
, “
Apparatus and Method for Producing Semiconductor Modules
,” U.S. Patent No. US7851334B2.
87.
Semikron Electronics
,
2009
, “
Power Semiconductor Substrates With Metal Contact Layer and Method of Manufacture Thereof
,” U.S. Patent No. US20090008784A1.
88.
Heraeus
,
2010
, “
Controlling the Porosity of Metal Pastes for Pressure Free, Low Temperature Sintering Process
,” U.S. Patent No. US2010/0051319A1.
89.
Zhao
,
S. Y.
,
Li
,
X.
,
Mei
,
Y. H.
, and
Lu
,
G. Q.
,
2015
, “
Study on High Temperature Bonding Reliability of Sintered Nano-Silver Joint on Bare Copper Plate
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2524
2531
.
90.
Siemens AG
,
2004
, “
Heat Conducting Adhesive Joint With an Adhesive-Filled Porous Heat Conductor
,” U.S. Patent No. US6823915B2.
91.
Danfoss Power Solutins
,
2012
, “
Method for Producing a High-Temperature and Temperature-Change Resistant Connection Between a Semiconductor Module and a Connection Partner
,” U.S. Patent No. US20120037688A1.
92.
Infineon Tech
,
2014
, “
Pre-Sintered Semiconductor Die Structure
,” U.S. Patent No. US8835299B2.
93.
Gobl
,
C.
, and
Faltenbacher
,
J.
,
2010
, “
Low Temperature Sinter Technology Die Attachment for Power Electronic Applications
,”
6th International Conference on Integrated Power Electron Systems
(
CIPS
), Nuremberg, Germany, Mar. 16–18.
94.
Kraft
,
S.
,
Zischler
,
S.
,
Tham
,
N.
, and
Schletz
,
A.
,
2013
, “
Properties of a Novel Silver Sintering Die Attach Material for High Temperature–High Lifetime Applications
,”
SENSOR 2013
, Nurenberg, Germany, May 14–16, pp.
242
247
.
95.
DeVoto
,
D.
,
Mihalic
,
M.
, and
Paret
,
P.
, “
Reliability of Bonded Interfaces
,” National Renewable Energy Laboratory, Golden, CO,
NREL
Report No. APE028.
96.
Siow
,
K. S.
,
Tay
,
A. A. O.
, and
Oruganti
,
P.
,
2004
, “
Mechanical Properties of Nanocrystalline Copper and Nickel
,”
Mater. Sci. Technol.
,
20
(
3
), pp.
285
294
.
97.
Chawla
,
N.
, and
Deng
,
X.
,
2005
, “
Microstructure and Mechanical Behavior of Porous Sintered Steels
,”
Mater. Sci. Eng. A
,
390
(
1
), pp.
98
112
.
98.
Alent Alpha, and Fico Besi
,
2013
, “
Argomax Ultra Fast Sintering
,” Alpha, South Plainfield, NJ, accessed Mar. 2, 2016, http://www.alphadieattach.com/UFS-Ultra-Fast-Sintering.asp
99.
Infineon Tech
,
2014
, “
Semiconductor Device and Method
,” U.S. Patent No. US8828804B2.
100.
Infineon Tech
,
2014
, “
Device Including a Semiconductor Chip and a Carrier and Fabrication Method
,” U.S. Patent No. US8637379B2.
101.
Alpha Metals
,
2012
, “
Sintering Materials and Attachments Methods Using Same
,” U.S. Patent No. US20120114927A1.
102.
Semikron Electrinic
,
2012
, “
Power Semiconductor Component With Metal Contact Layer and Production Method Therefor
,” U.S. Patent No. US8110925B2.
103.
Ixys
,
2012
, “
Solderless Die Attach to a Direct Bonded Aluminum Substrate
,” U.S. Patent No. US8716864B2.
104.
Alpha Metals
,
2011
, “
Sintering Materials and Attachment Methods Using Same
,” U.S. Patent No. US20120114927A1.
105.
Valtion Teknillinen
,
2015
, “
Method for Manufacturing Conductors and Semiconductors
,” U.S. Patent No. US9011762B2.
106.
Mei
,
Y.
,
Cao
,
Y.
,
Chen
,
G.
,
Li
,
X.
,
Lu
,
G. Q.
, and
Chen
,
X.
,
2013
, “
Rapid Sintering Nanosilver Joint by Pulse Current for Power Electronics Packaging
,”
IEEE Trans. Device Mater. Reliab.
,
13
(
1
), pp.
258
265
.
107.
Robert Bosch
,
2015
, “
Two-Step Method for Joining a Semiconductor to a Substrate With Connecting Material Based on Silver
,” U.S. Patent No. US20150123263A1.
108.
Toyota
,
2010
, “
Bonding Method
,” U.S. Patent No. US7770781B2.
109.
Valeo Electronique
,
2008
, “
Method of Assembling a Member on a Support by Sintering a Mass of Conductive Powder
,” U.S. Patent No. US8444913B2.
110.
Boschman
,
2014
, “
Advanced Molding and Sintering Systems: Sinterstar Innovate F-XL
,”
Boschman Technologies
B.V., Duiven, The Netherlands.
111.
Locatelli Meccanica
,
2016
, “
Hydraulic Presses
,”
Locatelli Meccanica
S.r.l., Subbiano, Italy.
112.
ABB Research
,
2005
, “
Method for Mounting Electronic Components on Substrates
,” U.S. Patent No. US6935556B2.
113.
Freescale Semiconductor Inc.
,
2015
, “
Packaged Semiconductor Devices and Methods of Their Fabrication
,” U.S. Patent No. US9099567B1.
114.
Int Rectifier
,
2014
, “
Sintering Utilizing Non-Mechanical Pressure
,” U.S. Patent No. US20140224409A1.
115.
Infineon Tech
,
2012
, “
Method for Producing a Composite and a Power Semiconductor Module
,” U.S. Patent No. US20130203218A1.
116.
Li
,
Y.
,
Jing
,
H.
,
Han
,
Y.
,
Xu
,
L.
, and
Lu
,
G.
,
2016
, “
Microstructure and Joint Properties of Nano-Silver Paste by Ultrasonic-Assisted Pressureless Sintering
,”
J. Electron. Mater.
, (epub ahead of print).
117.
Krebs
,
T. H.
,
2012
, “
mAgic—Novel Sintering Materials for Die Attach on DCB
,”
PowerGuru
(epub ahead of print).
118.
Riva
,
R.
,
Buttay
,
C.
,
Allard
,
B.
, and
Bevilacqua
,
P.
,
2013
, “
Migration Issues in Sintered-Silver Die Attaches Operating at High Temperature
,”
Microelectron. Reliab.
,
53
(
9
), pp.
1592
1596
.
119.
Mei
,
Y.
,
Lu
,
G. Q.
,
Chen
,
X.
,
Luo
,
S.
, and
Ibitayo
,
D.
,
2011
, “
Migration of Sintered Nanosilver Die-Attach Material on Alumina Substrate Between 250 and 400 in Dry Air
,”
IEEE Trans. Device Mater. Reliab.
,
11
(
2
), pp.
316
322
.
120.
Utterback
,
J. M.
,
1996
,
Mastering the Dynamics of Innovation
,
2nd ed.
,
Harvard Press
,
Boston
.
You do not currently have access to this content.