Polymers can be used as temporary place holders in the fabrication of embedded air gaps in a variety of electronic devices. Embedded air cavities can provide the lowest dielectric constant and loss for electrical insulation, mechanical compliance in devices where low-force deformations are desirable, and can temporarily protect movable parts during processing. Several families of polymers have been used as sacrificial, templating polymers including polycarbonates, polynorbornenes (PNBs), and polyaldehydes. The families can be distinguished by chemical structure and decomposition temperature. The decomposition temperature ranges from over 400 °C to below room temperature in the case of low ceiling temperature polymers. Overcoat materials include silicon dioxide, polyimides, epoxy, and bis-benzocyclobutene (BCB). The methods of air-gap fabrication are discussed. Finally, the use of photoactive compounds in the patterning of the sacrificial polymers is reviewed.

References

1.
International Technology Roadmap for Semiconductors (ITRS), SIA/Sematech International
,” http://public.itrs.net/
2.
Kohl
,
P. A.
,
2011
, “
Low-Dielectric Constant Insulators for Future Integrated Circuits and Packages
,”
Annu. Rev. Chem. Biomol. Eng.
,
2
(
1
), pp.
379
403
.
3.
Anand
,
M. B.
,
Yamada
,
M.
, and
Shibata
,
H.
,
1997
, “
Use of Gas as Low-k Interlayer Dielectric in LSI's: Demonstration of Feasibility
,”
IEEE Trans. Electron Devices
,
44
(
11
), pp.
1965
1971
.
4.
Nag
,
S.
,
2001
, “
Method of Implementing Air-Gap Technology for Low Capacitance ILD in the Damascene Scheme
,”
U.S. Patent No. 6,214,719
.
5.
Shieh
,
B.
,
Saraswat
,
K. C.
,
McVittie
,
J. P.
,
List
,
S.
,
Nag
,
S.
,
Islamraja
,
M.
, and
Havemann
,
R. H.
,
1998
, “
Air-Gap Formation During IMD Deposition to Lower Interconnect Capacitance
,”
IEEE Electron Device Lett.
,
19
(
1
), pp.
16
18
.
6.
Kohl
,
P. A.
,
Zhao
,
Q.
,
Patel
,
K.
,
Schmidt
,
D.
,
Bidstrup-Allen
,
S. A.
,
Shick
,
R.
, and
Jayaraman
,
S.
,
1998
, “
Air-Gaps for Electrical Interconnections
,”
Electrochem. Solid State Lett.
,
1
(
1
), pp.
49
51
.
7.
Kohl
,
P. A.
,
Bhusari
,
D. M.
,
Wedlake
,
M.
,
Case
,
C.
,
Klemens
,
F. P.
,
Miner
,
J.
,
Lee
,
B. C.
,
Gutmann
,
R. J.
, and
Shick
,
R.
,
2000
, “
Air-Gaps in 0.3 μm Electrical Interconnections
,”
IEEE Electron Device Lett.
,
21
(
12
), pp.
557
559
.
8.
Park
,
S.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2008
, “
Air-Gaps for High-Performance On-Chip Interconnect Part I: Improvement in Thermally Decomposable Template
,”
J. Electron. Mater.
,
37
(
10
), pp.
1524
1533
.
9.
Park
,
S.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2008
, “
Air-Gaps for High-Performance On-Chip Interconnect Part II: Modeling, Fabrication, and Characterization
,”
J. Electron. Mater.
,
37
(
10
), pp.
1534
1546
.
10.
Spencer
,
T. J.
,
Joseph
,
P. J.
,
Kim
,
T. H.
,
Swaminathan
,
M.
, and
Kohl
,
P. A.
,
2007
, “
Air-Gap Transmission Lines on Organic Substrates for Low-Loss Interconnects
,”
IEEE Trans. Microwave Theory Tech.
,
55
(
9
), pp.
1919
1925
.
11.
Kumar
,
V.
,
Sharma
,
R.
,
Uzunlar
,
E.
,
Zheng
,
L.
,
Bashirullah
,
R.
,
Kohl
,
P.
,
Bakir
,
M. S.
, and
Naeemi
,
A.
,
2014
, “
Airgap Interconnects: Modeling, Optimization, and Benchmarking for Backplane, PCB, and Interposer Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
8
), pp.
1335
1346
.
12.
Bakir
,
M. S.
,
Dang
,
B.
,
Emery
,
R.
,
Vandentop
,
G.
,
Kohl
,
P. A.
, and
Meindl
,
J. D.
,
2005
, “
Sea of Leads Compliant I/O Interconnect Process Integration for the Ultimate Enabling of Chips With Low-k Interlayer Dielectrics
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
488
494
.
13.
Bakir
,
M. S.
,
Reed
,
H. A.
,
Thacker
,
H. D.
,
Patel
,
C. S.
,
Kohl
,
P. A.
,
Martin
,
K. P.
, and
Meindl
,
J. D.
,
2003
, “
Sea of Leads (SoL) Ultrahigh Density Wafer-Level Chip Input/Output Interconnections for Gigascale Integration (GSI)
,”
IEEE Trans. Electron Devices
,
50
(
10
), pp.
2039
2048
.
14.
Bakir
,
M. S.
,
Reed
,
H. A.
,
Mulé
,
A. V.
,
Jayachandran
,
J. P.
,
Kohl
,
P. A.
,
Martin
,
K. P.
,
Gaylord
,
T. K.
, and
Meindl
,
J. D.
,
2003
, “
Chip-to-Module Interconnections Using ‘Sea of Leads' Technology
,”
MRS Bull.
,
28
(
1
), pp.
61
67
.
15.
Reed
,
H. A.
,
Jayachandran
,
J. P.
,
Shick
,
R. A.
,
Rhodes
,
L. F.
,
Krotine
,
J.
,
Elce
,
E.
,
Allen
,
S. A.
, and
Kohl
,
P. A.
,
2003
, “
Fabrication of Microchannels for Compliant Wafer Level Packaging Using Sacrificial Materials
,”
Proc. SPIE
,
4979
, pp.
287
294
.
16.
Ostrowicki
,
G. T.
,
Fritz
,
N. T.
,
Okereke
,
R. I.
,
Kohl
,
P. A.
, and
Sitaraman
,
S. K.
,
2012
, “
Domed and Released Thin-Film Construct—An Approach for Material Characterization and Compliant Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
12
(
1
), pp.
15
23
.
17.
Monajemi
,
P.
,
Joseph
,
P. J.
,
Kohl
,
P. A.
, and
Ayazi
,
F.
,
2006
, “
Wafer-Level MEMS Packaging Via Thermally Released Metal-Organic Membranes
,”
J. Micromech. Microeng.
,
16
(
4
), pp.
742
750
.
18.
Joseph
,
P. J.
,
Monajemi
,
P.
,
Ayazi
,
F.
, and
Kohl
,
P. A.
,
2007
, “
Wafer-Level Packaging of Micromechanical Resonators
,”
IEEE Trans. Adv. Packag.
,
30
(
1
), pp.
19
26
.
19.
Saha
,
R.
,
Fritz
,
N.
,
Bidstrup-Allen
,
S. A.
, and
Kohl
,
P. A.
,
2013
, “
Packaging-Compatible Wafer Level Capping of MEMS Devices
,”
Microelectron. Eng.
,
104
, pp.
75
84
.
20.
Jayachandran
,
J. P.
,
Reed
,
H. A.
,
Zhen
,
H. S.
,
Rhodes
,
L. F.
,
Henderson
,
C. L.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2003
, “
Air-Channel Fabrication for Microelectromechanical Systems Via Sacrificial Photosensitive Polycarbonates
,”
J. Microelectromech. Syst.
,
12
(
2
), pp.
147
159
.
21.
Moore
,
C. W.
,
Li
,
J.
, and
Kohl
,
P. A.
,
2005
, “
Microfabricated Fuel Cells With Thin-Film Silicon Dioxide Proton Exchange Membranes
,”
J. Electrochem. Soc.
,
152
(
8
), pp.
A1606
A1612
.
22.
Mule
,
A. V.
,
Villalaz
,
R. A.
,
Joseph
,
P. J.
,
Naeemi
,
A.
,
Kohl
,
P. A.
,
Gaylord
,
T. K.
, and
Meindl
,
J. D.
,
2005
, “
Polylithic Integration of Electrical and Optical Interconnect Technologies for Gigascale Fiber-to-the-Chip Communication
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
421
433
.
23.
Wedlake
,
M. D.
, and
Kohl
,
P. A.
,
2002
, “
Thermal Decomposition Kinetics of Functionalized Polynorbornene
,”
J. Mater. Res.
,
17
(
3
), pp.
632
640
.
24.
Bhusari
,
D.
,
Reed
,
H. A.
,
Wedlake
,
M.
,
Padovani
,
A. M.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2001
, “
Fabrication of Air-Channel Structures for Microfluidic, Microelectromechanical, and Microelectronic Applications
,”
J. Microelectromech. Syst.
,
10
(
3
), pp.
400
408
.
25.
Wu
,
X. Q.
,
Reed
,
H. A.
,
Rhodes
,
L. F.
,
Elce
,
E.
,
Ravikiran
,
R.
,
Shick
,
R. A.
,
Henderson
,
C. L.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2002
, “
Lithographic Characteristics and Thermal Processing of Photosensitive Sacrificial Materials
,”
J. Electrochem. Soc.
,
149
(
10
), pp.
G555
G561
.
26.
Wu
,
X. Q.
,
Reed
,
H. A.
,
Wang
,
Y.
,
Rhodes
,
L. F.
,
Elce
,
E.
,
Ravikiran
,
R.
,
Shick
,
R. A.
,
Henderson
,
C. L.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2003
, “
Fabrication of Microchannels Using Polynorbornene Photosensitive Sacrificial Materials
,”
J. Electrochem. Soc.
,
150
(
9
), pp.
H205
H213
.
27.
Kelleher
,
H. A.
,
2004
, “
Air-Gaps Via Thermally Decomposable Polymers and Their Application to Compliant Wafer Lever Packaging
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
28.
Spencer
,
T.
,
Chen
,
Y.
,
Saha
,
R.
, and
Kohl
,
P.
,
2011
, “
Stabilization of the Thermal Decomposition of Poly(Propylene Carbonate) Through Copper Ion Incorporation and Use in Self-Patterning
,”
J. Electron. Mater.
,
40
(
6
), pp.
1350
1363
.
29.
Uzunlar
,
E.
, and
Kohl
,
P. A.
,
2015
, “
Size-Compatible, Polymer-Based Air-Gap Formation Processes, and Polymer Residue Analysis for Wafer-Level MEMS Packaging Applications
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041001
.
30.
Kember
,
M. R.
,
Buchard
,
A.
, and
Williams
,
C. K.
,
2011
, “
Catalysts for CO2/Epoxide Copolymerisation
,”
Chem. Commun.
,
47
(
1
), pp.
141
163
.
31.
Fritz
,
N.
,
Dao
,
H.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2012
, “
Polycarbonates as Temporary Adhesives
,”
Int. J. Adhes. Adhes.
,
38
, pp.
45
49
.
32.
Altenbuchner
,
P.
,
Kissling
,
S.
, and
Rieger
,
B.
,
2014
, “
Carbon Dioxide as C-1 Block for the Synthesis of Polycarbonates
,”
Transformation and Utilization of Carbon Dioxide
,
B. M.
Bhanage
and
M.
Arai
, eds.,
Springer
,
Berlin
, pp.
163
200
.
33.
Luinstra
,
G. A.
, and
Borchardt
,
E.
,
2012
, “
Material Properties of Poly(Propylene Carbonates)
,”
Synthetic Biodegradable Polymers
,
B.
Rieger
,
A.
Künkel
,
G. W.
Coates
,
R.
Reichardt
,
E.
Dinjus
, and
T. A.
Zevaco
, eds.,
Springer
,
Berlin
, pp.
29
48
.
34.
Luinstra
,
G. A.
,
2008
, “
Poly(Propylene Carbonate), Old Copolymers of Propylene Oxide and Carbon Dioxide With New Interests: Catalysis and Material Properties
,”
Polym. Rev.
,
48
(
1
), pp.
192
219
.
35.
Luinstra
,
G. A.
,
Haas
,
G. R.
,
Molnar
,
F.
,
Bernhart
,
V.
,
Eberhardt
,
R.
, and
Rieger
,
B.
,
2005
, “
On the Formation of Aliphatic Polycarbonates From Epoxides With Chromium(III) and Aluminum(III) Metal-Salen Complexes
,”
Chem.-Eur. J.
,
11
(
21
), pp.
6298
6314
.
36.
Darensbourg
,
D. J.
, and
Yeung
,
A. D.
,
2014
, “
A Concise Review of Computational Studies of the Carbon Dioxide–Epoxide Copolymerization Reactions
,”
Polym. Chem.
,
5
(
13
), pp.
3949
3962
.
37.
Spencer
,
T. J.
, and
Kohl
,
P. A.
,
2011
, “
Decomposition of Poly(Propylene Carbonate) With UV Sensitive Iodonium Salts
,”
Polym. Degrad. Stab.
,
96
(
4
), pp.
686
702
.
38.
Kissinger
,
H. E.
,
1957
, “
Reaction Kinetics in Differential Thermal Analysis
,”
Anal. Chem.
,
29
(
11
), pp.
1702
1706
.
39.
Liu
,
B. Y.
,
Zhao
,
X. J.
,
Wang
,
X. H.
, and
Wang
,
F. S.
,
2003
, “
Thermal Degradation Kinetics of Poly(Propylene Carbonate) Obtained From the Copolymerization of Carbon Dioxide and Propylene Oxide
,”
J. Appl. Polym. Sci.
,
90
(
4
), pp.
947
953
.
40.
Reich
,
L.
, and
Stivala
,
S. S.
,
1971
,
Elements of Polymer Degradation
,
McGraw-Hill
,
New York
.
41.
Ozawa
,
T.
,
1965
, “
A New Method of Analyzing Thermogravimetric Data
,”
Bull. Chem. Soc. Jpn.
,
38
(
11
), pp.
1881
1886
.
42.
Coats
,
A. W.
, and
Redfern
,
J. P.
,
1964
, “
Kinetic Parameters From Thermogravimetric Data
,”
Nature
,
201
(
4914
), pp.
68
69
.
43.
Phadnis
,
A. B.
, and
Deshpande
,
V. V.
,
1983
, “
Determination of the Kinetics and Mechanism of a Solid State Reaction. A Simple Approach
,”
Thermochim. Acta
,
62
(
2–3
), pp.
361
367
.
44.
Chang
,
W. L.
,
1994
, “
Decomposition Behavior of Polyurethanes Via Mathematical Simulation
,”
J. Appl. Polym. Sci.
,
53
(
13
), pp.
1759
1769
.
45.
ASTM
,
2015
, “
Standard Test Method for Decomposition Kinetics by Thermogravimetry Using the Ozawa/Flynn/Wall Method
,” ASTM International, West Conshohocken, PA, ASTM Standard E1641-15.
46.
Doyle
,
C. D.
,
1961
, “
Kinetic Analysis of Thermogravimetric Data
,”
J. Appl. Polym. Sci.
,
5
(
15
), pp.
285
292
.
47.
Reed
,
H. A.
,
White
,
C. E.
,
Rao
,
V.
,
Allen
,
S. A. B.
,
Henderson
,
C. L.
, and
Kohl
,
P. A.
,
2001
, “
Fabrication of Microchannels Using Polycarbonates as Sacrificial Materials
,”
J. Micromech. Microeng.
,
11
(
6
), pp.
733
737
.
48.
Cohen
,
C. T.
,
Chu
,
T.
, and
Coates
,
G. W.
,
2005
, “
Cobalt Catalysts for the Alternating Copolymerization of Propylene Oxide and Carbon Dioxide: Combining High Activity and Selectivity
,”
J. Am. Chem. Soc.
,
127
(
31
), pp.
10869
10878
.
49.
Gao
,
L. J.
,
Xiao
,
M.
,
Wang
,
S. J.
,
Du
,
F. G.
, and
Meng
,
Y. Z.
,
2007
, “
Copolymerization of Carbon Dioxide and Propylene Oxide With Zinc Glutarate as Catalyst in the Presence of Compounds Containing Active Hydrogen
,”
J. Appl. Polym. Sci.
,
104
(
1
), pp.
15
20
.
50.
Lu
,
X. B.
, and
Wang
,
Y.
,
2004
, “
Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides Under Mild Conditions
,”
Angew. Chem., Int. Ed.
,
43
(
27
), pp.
3574
3577
.
51.
Philips
,
O.
,
Schwartz
,
J.
, and
Kohl
,
P.
,
2016
, “
Thermal Decomposition of Poly(propylene Carbonate): End-capping, Additives, and Solvent Effects
,”
Polym. Degrad. Stab.
,
125
, pp.
129
139
.
52.
Peng
,
S. W.
,
An
,
Y. X.
,
Chen
,
C.
,
Fei
,
B.
,
Zhuang
,
Y. G.
, and
Dong
,
L. S.
,
2003
, “
Thermal Degradation Kinetics of Uncapped and End-Capped Poly(Propylene Carbonate)
,”
Polym. Degrad. Stab.
,
80
(
1
), pp.
141
147
.
53.
Yao
,
M. J.
,
Mai
,
F.
,
Deng
,
H.
,
Ning
,
N. Y.
,
Wang
,
K.
, and
Fu
,
Q. A.
,
2011
, “
Improved Thermal Stability and Mechanical Properties of Poly(Propylene Carbonate) by Reactive Blending With Maleic Anhydride
,”
J. Appl. Polym. Sci.
,
120
(
6
), pp.
3565
3573
.
54.
An
,
J. J.
,
Ke
,
Y. C.
,
Cao
,
X. Y.
,
Ma
,
Y. M.
, and
Wang
,
F. S.
,
2014
, “
A Novel Method to Improve the Thermal Stability of Poly(Propylene Carbonate)
,”
Polym. Chem.
,
5
(
14
), pp.
4245
4250
.
55.
Cupta
,
M. G.
,
2006
, “
Photoacid Generators for Catalytic Decomposition of Polycarbonate
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
56.
Cupta
,
M.
,
Joseph
,
P.
, and
Kohl
,
P.
,
2007
, “
Photoacid Generators for Catalytic Decomposition of Polycarbonate
,”
J. Appl. Polym. Sci.
,
105
(
5
), pp.
2655
2662
.
57.
Jung
,
J. H.
,
Ree
,
M.
, and
Kim
,
H.
,
2006
, “
Acid- and Base-Catalyzed Hydrolyses of Aliphatic Polycarbonates and Polyesters
,”
Catal. Today
,
115
(
1–4
), pp.
283
287
.
58.
Sun
,
X.
,
2008
, “
Development of Tetraphenylborate-Based Photobase Generators and Sacrificial Polycarbonates for Radiation Curing and Photoresist Applications
,”
Ph.D. thesis
, Carleton University, Ottawa, ON, Canada.
59.
Sun
,
X.
,
Gao
,
J. P.
, and
Wang
,
Z. Y.
,
2008
, “
Bicyclic Guanidinium Tetraphenylborate: A Photobase Generator and a Photocatalyst for Living Anionic Ring-Opening Polymerization and Cross-Linking of Polymeric Materials Containing Ester and Hydroxy Groups
,”
J. Am. Chem. Soc.
,
130
(
26
), pp.
8130
8131
.
60.
"Processing Procedures for Cyclotene 4000 Series Resins—DS3000 Immersion Develop Process," http://www.dow.com/cyclotene/resource/prodlit.htm
61.
Uzunlar
,
E.
,
Sharma
,
R.
,
Saha
,
R.
,
Kumar
,
V.
,
Bashirullah
,
R.
,
Naeemi
,
A.
, and
Kohl
,
P. A.
,
2013
, “
Design and Fabrication of Ultra Low-Loss, High-Performance 3D Chip-Chip Air-Clad Interconnect Pathway
,”
IEEE 63rd Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
1425
1432
.
62.
Purdy
,
A. P.
,
Godbey
,
D.
, and
Buckley
,
L.
,
1997
, “
The Dissolution of Copper in Common Solvents Used for Low Dielectric Polymers
,”
Thin Solid Films
,
308–309
, pp.
486
489
.
63.
Uzunlar
,
E.
, and
Kohl
,
P. A.
,
2012
, “
Thermal and Photocatalytic Stability Enhancement Mechanism of Poly(Propylene Carbonate) Due to Cu(I) Impurities
,”
Polym. Degrad. Stab.
,
97
(
9
), pp.
1829
1837
.
64.
Crivello
,
J.
,
Lockhart
,
T.
, and
Lee
,
J.
,
1983
, “
Diaryliodonium Salts as Thermal Initiators of Cationic Polymerization
,”
J. Polym. Sci., Part A: Polym. Chem.
,
21
(
1
), pp.
97
109
.
65.
Rajarathinam
,
V.
,
Fritz
,
N.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2011
, “
Imprint Lithography Enabling Ultra-Low Loss Coaxial Interconnects
,”
Microelectron. Eng.
,
88
(
3
), pp.
240
246
.
66.
Sharma
,
R.
,
Uzunlar
,
E.
,
Kumar
,
V.
,
Saha
,
R.
,
Yeow
,
X.
,
Bashirullah
,
R.
,
Naeemi
,
A.
, and
Kohl
,
P.
,
2012
, “
Design and Fabrication of Low-Loss Horizontal and Vertical Interconnect Links Using Air-Clad Transmission Lines and Through Silicon Vias
,”
IEEE 62nd Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 29–June 1, pp.
2005
2012
.
67.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
,
1996
, “
Imprint Lithography With 25-Nanometer Resolution
,”
Science
,
272
(
5258
), pp.
85
87
.
68.
Li
,
W. L.
,
Tegenfeldt
,
J. O.
,
Chen
,
L.
,
Austin
,
R. H.
,
Chou
,
S. Y.
,
Kohl
,
P. A.
,
Krotine
,
J.
, and
Sturm
,
J. C.
,
2003
, “
Sacrificial Polymers for Nanofluidic Channels in Biological Applications
,”
Nanotechnology
,
14
(
6
), pp.
578
583
.
69.
Barreto
,
C.
,
Hansen
,
E.
, and
Fredriksen
,
S.
,
2012
, “
Novel Solventless Purification of Poly(Propylene Carbonate): Tailoring the Composition and Thermal Properties of PPC
,”
Polym. Degrad. Stab.
,
97
(
6
), pp.
893
904
.
70.
Yu
,
T.
,
Zhou
,
Y.
,
Liu
,
K. P.
,
Zhao
,
Y.
,
Chen
,
E. Q.
,
Wang
,
F. S.
, and
Wang
,
D. J.
,
2009
, “
Improving Thermal Stability of Biodegradable Aliphatic Polycarbonate by Metal Ion Coordination
,”
Polym. Degrad. Stab.
,
94
(
2
), pp.
253
258
.
71.
Varghese
,
J. K.
,
Na
,
S. J.
,
Park
,
J. H.
,
Woo
,
D.
,
Yang
,
I.
, and
Lee
,
B. Y.
,
2010
, “
Thermal and Weathering Degradation of Poly(Propylene Carbonate)
,”
Polym. Degrad. Stab.
,
95
(
6
), pp.
1039
1044
.
72.
Meng
,
Y. Z.
,
Du
,
L. C.
,
Tjong
,
S. C.
,
Zhu
,
Q.
, and
Hay
,
A. S.
,
2002
, “
Effects of the Structure and Morphology of Zinc Glutarate on the Fixation of Carbon Dioxide Into Polymer
,”
J. Polym. Sci., Part A: Polym. Chem.
,
40
(
21
), pp.
3579
3591
.
73.
Tao
,
Y. H.
,
Wang
,
X. H.
,
Chen
,
X. S.
,
Zhao
,
X. J.
, and
Wang
,
F. S.
,
2008
, “
Regio-Regular Structure High Molecular Weight Poly(Propylene Carbonate) by Rare Earth Ternary Catalyst and Lewis Base Cocatalyst
,”
J. Polym. Sci., Part A: Polym. Chem.
,
46
(
13
), pp.
4451
4458
.
74.
Qin
,
Y. S.
,
Wang
,
X. H.
,
Zhang
,
S. B.
,
Zhao
,
X. J.
, and
Wang
,
F. S.
,
2008
, “
Fixation of Carbon Dioxide Into Aliphatic Polycarbonate, Cobalt Porphyrin Catalyzed Regio-Specific Poly(Propylene Carbonate) With High Molecular Weight
,”
J. Polym. Sci., Part A: Polym. Chem.
,
46
(
17
), pp.
5959
5967
.
75.
Lu
,
L. B.
, and
Huang
,
K. L.
,
2005
, “
Synthesis and Characteristics of a Novel Aliphatic Polycarbonate, Poly[(Propylene Oxide)-co-(Carbon Dioxide)-co-(γ-Butyrolactone)]
,”
Polym. Int.
,
54
(
6
), pp.
870
874
.
76.
Zhang
,
Z. H.
,
Mo
,
Z. S.
,
Zhang
,
H. F.
,
Zhang
,
Y.
,
Na
,
T. H.
,
An
,
Y. X.
,
Wang
,
X. H.
, and
Zhao
,
X. J.
,
2002
, “
Miscibility and Hydrogen-Bonding Interactions in Blends of Carbon Dioxide/Epoxy Propane Copolymer With Poly (p-Vinylphenol)
,”
J. Polym. Sci., Part B: Polym. Phys.
,
40
(
17
), pp.
1957
1964
.
77.
Chen
,
Y. C.
, and
Kohl
,
P. A.
,
2011
, “
Photosensitive Sacrificial Polymer With Low Residue
,”
Microelectron. Eng.
,
88
(
10
), pp.
3087
3093
.
78.
Joseph
,
P. J.
,
Kelleher
,
H. A.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2005
, “
Improved Fabrication of Micro Air-Channels by Incorporation of a Structural Barrier
,”
J. Micromech. Microeng.
,
15
(
1
), pp.
35
42
.
79.
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1992
, “
A New Bulge Test Technique for the Determination of Young's Modulus and Poisson's Ratio of Thin Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.
80.
Odian
,
G.
,
2004
, “
Radical Chain Polymerization
,”
Principles of Polymerization
,
Wiley
,
Hoboken, NJ
, pp.
198
349
.
81.
Ivin
,
K. J.
,
2000
, “
Thermodynamics of Addition Polymerization
,”
J. Polym. Sci., Part A: Polym. Chem.
,
38
(
12
), pp.
2137
2146
.
82.
Nagasaki
,
Y.
,
Yamazaki
,
N.
, and
Kato
,
M.
,
1996
, “
Polymers With Controlled Degradability Through End-Modification of Poly(Alpha-Methylstyrene) Derivatives
,”
Polymer
,
37
(
19
), pp.
4321
4326
.
83.
Sagi
,
A.
,
Weinstain
,
R.
,
Karton
,
N.
, and
Shabat
,
D.
,
2008
, “
Self-Immolative Polymers
,”
J. Am. Chem. Soc.
,
130
(
16
), pp.
5434
5435
.
84.
Peterson
,
G. I.
,
Church
,
D. C.
,
Yakelis
,
N. A.
, and
Boydston
,
A. J.
,
2014
, “
1,2-Oxazine Linker as a Thermal Trigger for Self-Immolative Polymers
,”
Polymer
,
55
(
23
), pp.
5980
5985
.
85.
Phillips
,
S. T.
,
Robbins
,
J. S.
,
DiLauro
,
A. M.
, and
Olah
,
M. G.
,
2014
, “
Amplified Responses in Materials Using Linear Polymers That Depolymerize From End-to-End When Exposed to Specific Stimuli
,”
J. Appl. Polym. Sci.
,
131
(
19
), p.
40992
.
86.
Phillips
,
S. T.
, and
DiLauro
,
A. M.
,
2014
, “
Continuous Head-to-Tail Depolymerization: An Emerging Concept for Imparting Amplified Responses to Stimuli-Responsive Materials
,”
ACS Macro Lett.
,
3
(
4
), pp.
298
304
.
87.
Peterson
,
G. I.
,
Larsen
,
M. B.
, and
Boydston
,
A. J.
,
2012
, “
Controlled Depolymerization: Stimuli-Responsive Self-Immolative Polymers
,”
Macromolecules
,
45
(
18
), pp.
7317
7328
.
88.
Wong
,
A. D.
,
Gungor
,
T. M.
, and
Gillies
,
E. R.
,
2014
, “
Multiresponsive Azobenzene End-Cap for Self-Immolative Polymers
,”
ACS Macro Lett.
,
3
(
11
), pp.
1191
1195
.
89.
Zhu
,
C. C.
,
Ninh
,
C.
, and
Bettinger
,
C. J.
,
2014
, “
Photoreconfigurable Polymers for Biomedical Applications: Chemistry and Macromolecular Engineering
,”
Biomacromolecules
,
15
(
10
), pp.
3474
3494
.
90.
Lee
,
O. P.
,
Hernandez
,
H. L.
, and
Moore
,
J. S.
,
2015
, “
Tunable Thermal Degradation of Poly(Vinyl Butyl Carbonate Sulfone)s Via Side-Chain Branching
,”
ACS Macro Lett.
,
4
(
7
), pp.
665
668
.
91.
Fomina
,
N.
,
McFearin
,
C.
,
Sermsakdi
,
M.
,
Edigin
,
O.
, and
Almutairi
,
A.
,
2010
, “
UV and Near-IR Triggered Release From Polymeric Nanoparticles
,”
J. Am. Chem. Soc.
,
132
(
28
), pp.
9540
9542
.
92.
McBride
,
R. A.
, and
Gillies
,
E. R.
,
2013
, “
Kinetics of Self-Immolative Degradation in a Linear Polymeric System: Demonstrating the Effect of Chain Length
,”
Macromolecules
,
46
(
13
), pp.
5157
5166
.
93.
Robbins
,
J. S.
,
Schmid
,
K. M.
, and
Phillips
,
S. T.
,
2013
, “
Effects of Electronics, Aromaticity, and Solvent Polarity on the Rate of Azaquinone–Methide-Mediated Depolymerization of Aromatic Carbamate Oligomers
,”
J. Org. Chem.
,
78
(
7
), pp.
3159
3169
.
94.
Tanaka
,
A.
,
Endo
,
S.
,
Hatada
,
K.
,
Hozumi
,
Y.
, and
Fujishige
,
R.
,
1964
, “
Isomorphism Phenomena in Polyaldehydes
,”
J. Polym. Sci., Part B: Polym. Lett.
,
2
(
2
), pp.
181
186
.
95.
Kubisa
,
P.
,
Neeld
,
K.
,
Starr
,
J.
, and
Vogl
,
O.
,
1980
, “
Polymerization of Higher Aldehydes
,”
Polymer
,
21
(
12
), pp.
1433
1447
.
96.
Vogl
,
O.
,
1964
, “
Polymerization of Higher Aldehydes. III. Elastomeric Polyacetaldehyde
,”
J. Polym. Sci. Part A
,
2
(
10
), pp.
4591
4606
.
97.
Vogl
,
O.
,
1964
, “
Polymerization of Higher Aldehydes. IV. Crystalline Isotactic Polyaldehydes: Anionic and Cationic Polymerization
,”
J. Polym. Sci. Part A
,
2
(
10
), pp.
4607
4620
.
98.
Vogl
,
O.
, and
Bryant
,
W. M. D.
,
1964
, “
Polymerization of Higher Aldehydes. VI. Mechanism of Aldehyde Polymerization
,”
J. Polym. Sci. Part A
,
2
(
10
), pp.
4633
4645
.
99.
Vogl
,
O.
,
2000
, “
Addition Polymers of Aldehydes
,”
J. Polym. Sci., Part A: Polym. Chem.
,
38
(
13
), pp.
2293
2299
.
100.
Ito
,
H.
, and
Willson
,
C. G.
,
1983
, “
Chemical Amplification in the Design of Dry Developing Resist Materials
,”
Polym. Eng. Sci.
,
23
(
18
), pp.
1012
1018
.
101.
DiLauro
,
A. M.
,
Robbins
,
J. S.
, and
Phillips
,
S. T.
,
2013
, “
Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)
,”
Macromolecules
,
46
(
8
), pp.
2963
2968
.
102.
De Winter
,
J.
,
Dove
,
A. P.
,
Knoll
,
A.
,
Gerbaux
,
P.
,
Dubois
,
P.
, and
Coulembier
,
O.
,
2014
, “
Control Over Molar Mass, Dispersity, End-Groups and Kinetics in Cyclopolymerization of Ortho-Phthataldehyde: Adapted Choice of a Phosphazene Organocatalyst
,”
Polym. Chem.
,
5
(
3
), pp.
706
711
.
103.
DiLauro
,
A. M.
, and
Phillips
,
S. T.
,
2015
, “
End-Capped Poly(4,5-Dichlorophthalaldehyde): A Stable Self-Immolative Poly(aldehyde) for Translating Specific Inputs Into Amplified Outputs, Both in Solution and the Solid State
,”
Polym. Chem.
,
6
(
17
), pp.
3252
3258
.
104.
DiLauro
,
A. M.
,
Lewis
,
G. G.
, and
Phillips
,
S. T.
,
2015
, “
Self-Immolative Poly(4,5-Dichlorophthalaldehyde) and Its Applications in Multi-Stimuli-Responsive Macroscopic Plastics
,”
Angew. Chem., Int. Ed.
,
54
(
21
), pp.
6200
6205
.
105.
Köstler
,
S.
,
2012
, “
Polyaldehydes: Homopolymers, Block Copolymers and Promising Applications
,”
Polym. Int.
,
61
(
8
), pp.
1221
1227
.
106.
Coulembier
,
O.
,
Knoll
,
A.
,
Pires
,
D.
,
Gotsmann
,
B.
,
Duerig
,
U.
,
Frommer
,
J.
,
Miller
,
R. D.
,
Dubois
,
P.
, and
Hedrick
,
J. L.
,
2010
, “
Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography
,”
Macromolecules
,
43
(
1
), pp.
572
574
.
107.
Park
,
C. W.
,
Kang
,
S. K.
,
Hernandez
,
H. L.
,
Kaitz
,
J. A.
,
Wie
,
D. S.
,
Shin
,
J.
,
Lee
,
O. P.
,
Sottos
,
N. R.
,
Moore
,
J. S.
,
Rogers
,
J. A.
, and
White
,
S. R.
,
2015
, “
Thermally Triggered Degradation of Transient Electronic Devices
,”
Adv. Mater.
,
27
(
25
), pp.
3783
3788
.
108.
Hernandez
,
H. L.
,
Kang
,
S. K.
,
Lee
,
O. P.
,
Hwang
,
S. W.
,
Kaitz
,
J. A.
,
Inci
,
B.
,
Park
,
C. W.
,
Chung
,
S. J.
,
Sottos
,
N. R.
,
Moore
,
J. S.
,
Rogers
,
J. A.
, and
White
,
S. R.
,
2014
, “
Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics
,”
Adv. Mater.
,
26
(
45
), pp.
7637
7642
.
109.
Vogt
,
A. P.
,
De Winter
,
J.
,
Krolla-Sidenstein
,
P.
,
Geckle
,
U.
,
Coulembier
,
O.
, and
Barner-Kowollik
,
C.
,
2014
, “
Polyphthalaldehyde-Block-Polystyrene as a Nanochannel Template
,”
J. Mater. Chem. B
,
2
(
23
), pp.
3578
3581
.
110.
Wood
,
J. D.
,
Doidge
,
G. P.
,
Carrion
,
E. A.
,
Koepke
,
J. C.
,
Kaitz
,
J. A.
,
Datye
,
I.
,
Behnam
,
A.
,
Hewaparakrama
,
J.
,
Aruin
,
B.
,
Chen
,
Y. F.
,
Dong
,
H.
,
Haasch
,
R. T.
,
Lyding
,
J. W.
, and
Pop
,
E.
,
2015
, “
Annealing Free, Clean Graphene Transfer Using Alternative Polymer Scaffolds
,”
Nanotechnology
,
26
(
5
), p.
055302
.
111.
Kaitz
,
J. A.
, and
Moore
,
J. S.
,
2014
, “
Copolymerization of o-Phthalaldehyde and Ethyl Glyoxylate: Cyclic Macromolecules With Alternating Sequence and Tunable Thermal Properties
,”
Macromolecules
,
47
(
16
), pp.
5509
5513
.
112.
Kaitz
,
J. A.
,
Diesendruck
,
C. E.
, and
Moore
,
J. S.
,
2014
, “
Divergent Macrocyclization Mechanisms in the Cationic Initiated Polymerization of Ethyl Glyoxylate
,”
Macromolecules
,
47
(
11
), pp.
3603
3607
.
113.
Fan
,
B.
,
Trant
,
J. F.
,
Wong
,
A. D.
, and
Gillies
,
E. R.
,
2014
, “
Polyglyoxylates: A Versatile Class of Triggerable Self-Immolative Polymers From Readily Accessible Monomers
,”
J. Am. Chem. Soc.
,
136
(
28
), pp.
10116
10123
.
114.
Belloncle
,
B.
,
Burel
,
F.
,
Oulyadi
,
H.
, and
Bunel
,
C.
,
2008
, “
Study of the In Vitro Degradation of Poly(Ethyl Glyoxylate)
,”
Polym. Degrad. Stab.
,
93
(
6
), pp.
1151
1157
.
115.
Tsuda
,
M.
,
Hata
,
M.
,
Nishida
,
R.
, and
Oikawa
,
S.
,
1997
, “
Acid-Catalyzed Degradation Mechanism of Poly(phthalaldehyde): Unzipping Reaction of Chemical Amplification Resist
,”
J. Polym. Sci., Part A: Polym. Chem.
,
35
(
1
), pp.
77
89
.
116.
Kaitz
,
J. A.
,
Possanza
,
C. M.
,
Song
,
Y.
,
Diesendruck
,
C. E.
,
Spiering
,
A. J. H.
,
Meijer
,
E. W.
, and
Moore
,
J. S.
,
2014
, “
Depolymerizable, Adaptive Supramolecular Polymer Nanoparticles and Networks
,”
Polym. Chem.
,
5
(
12
), pp.
3788
3794
.
117.
Kaitz
,
J. A.
, and
Moore
,
J. S.
,
2013
, “
Functional Phthalaldehyde Polymers by Copolymerization With Substituted Benzaldehydes
,”
Macromolecules
,
46
(
3
), pp.
608
612
.
118.
Bowden
,
M. J.
, and
Thompson
,
L. F.
,
1977
, “
Effect of Olefin Structure on Vapor-Development of Poly (Olefin Sulfones) Under Electron-Irradiation
,”
Polym. Eng. Sci.
,
17
(
4
), pp.
269
273
.
119.
Bowden
,
M. J.
, and
Thompson
,
L. F.
,
1973
, “
Electron-Irradiation of Poly(Olefin Sulfones)—Application to Electron-Beam Resists
,”
J. Appl. Polym. Sci.
,
17
(
10
), pp.
3211
3221
.
120.
Lawrie
,
K.
,
Blakey
,
I.
,
Blinco
,
J.
,
Gronheid
,
R.
,
Jack
,
K.
,
Pollentier
,
I.
,
Leeson
,
M. J.
,
Younkin
,
T. R.
, and
Whittaker
,
A. K.
,
2011
, “
Extreme Ultraviolet (EUV) Degradation of Poly(Olefin Sulfone)s: Towards Applications as EUV Photoresists
,”
Radiat. Phys. Chem.
,
80
(
2
), pp.
236
241
.
121.
Thompson
,
L. F.
, and
Bowden
,
M. J.
,
1973
, “
A New Family of Positive Electron-Beam Resists-Poly(Olefin Sulfones)
,”
J. Electrochem. Soc.
,
120
(
12
), pp.
1722
1726
.
122.
Sasaki
,
T.
,
Yoneyama
,
T.
,
Hashimoto
,
S.
,
Takemura
,
S.
, and
Naka
,
Y.
,
2013
, “
Photoinduced Depolymerization of Poly(Olefin Sulfone)s Possessing Photobase Generator Side-Chains: Effect of Spacer-Chain Length
,”
J. Polym. Sci., Part A: Polym. Chem.
,
51
(
18
), pp.
3873
3880
.
123.
Hickey
,
A.
,
Leahy
,
J. J.
, and
Birkinshaw
,
C.
,
2001
, “
End-Group Identity and Its Effect on the Thermal Degradation of Poly(Butyl Cyanoacrylate)
,”
Macromol. Rapid Commun.
,
22
(
14
), pp.
1158
1162
.
You do not currently have access to this content.