All solid-state lighting products produce heat which should be removed by use of a heat sink. Since the two mating surfaces of light emitting diode (LED) package and heat sink are not flat, a thermal interface material (TIM) must be applied between them to fill the gaps resulting from their surface roughness and lack of coplanarity. The application of a traditional TIM may squeeze out when pressure is applied to join the surfaces and hence a short circuit may result. To avoid such a problem, a thin solid film based TIM has been suggested. In this study, a zinc oxide (ZnO) thin film was coated on Cu substrates and used as the TIM. The ZnO thin film coated substrates were used as heat sink purposes in this study. The prepared heat sink was tested with 3 W green LED and the observed results were compared with the results of same LED measured at bare and commercial thermal paste coated Cu substrates boundary conditions. The influence of interface material thickness on total thermal resistance (Rth-tot), rise in junction temperature (TJ), and optical properties of LED was analyzed. A noticeable reduction in Rth-tot (5.92 K/W) as well as TJ (ΔTJ = 11.83 °C) was observed for 800 nm ZnO thin film coated Cu substrates boundary conditions when compared with bare and thermal paste coated Cu substrates tested at 700 mA. Change in TJ influenced the thermal resistance of ZnO interface material. Improved lux level and decreased correlated color temperature (CCT) were also observed with ZnO coated Cu substrates.

References

References
1.
Lin
,
C. H.
,
Chen
,
C. Y.
,
Yeh
,
D. M.
, and
Yang
,
C. C.
,
2010
, “
Light Extraction Enhancement of a GaN-Based Light-Emitting Diode Through Grating-Patterned Photoelectrochemical Surface Etching With Phase Mask Interferometry
,”
IEEE Photonics Technol. Lett.
,
22
(
9
), pp.
640
642
.
2.
Kim
,
J. B.
,
Kim
,
S. M.
,
Kim
,
Y. W.
,
Kang
,
S. K.
,
Jeon
,
S. R.
,
Hwang
,
N.
,
Choi
,
Y. J.
, and
Chung
,
C. S.
,
2010
, “
Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates
,”
Jpn. J. Appl. Phys.
,
49
(
4
), p.
042102
.
3.
Wiesmann
,
C.
,
Bergenek
,
K.
,
Linder
,
N.
, and
Schwarz
,
U. T.
,
2009
, “
Photonic Crystal LEDs – Designing Light Extraction
,”
Laser Photonics Rev.
,
3
(
3
), pp.
262
286
.
4.
Huang
,
C. Y.
,
Ku
,
H. M.
, and
Chao
,
S.
,
2009
, “
Light Extraction Enhancement for InGaN/GaN LED by Three Dimensional Auto-Cloned Photonics Crystal
,”
Opt. Express
,
17
(
26
), pp.
23702
23711
.
5.
Hwang
,
J. M.
,
Lee
,
K. F.
, and
Hwang
,
H. L.
,
2008
, “
Optical and Electrical Properties of GaN Micron-Scale Light-Emitting Diode
,”
J. Phys. Chem. Solids
,
69
(
2–3
), pp.
752
758
.
6.
Gong
,
Z.
,
Gu
,
E.
,
Jin
,
S. R.
,
Massoubre
,
D.
,
Guilhabert
,
B.
,
Zhang
,
H. X.
,
Dawson
,
M. D.
,
Poher
,
V.
,
Kennedy
,
G. T.
,
French
,
P. M. W.
, and
Neil
,
M. A. A.
,
2008
, “
Efficient Flip-Chip InGaN Micro-Pixellated Light-Emitting Diode Arrays: Promising Candidates for Micro-Displays and Colour Conversion
,”
J. Phys. D Appl. Phys.
,
41
, p.
094002
.
7.
Wong
,
W. S.
,
Sands
,
T.
, and
Cheung
,
N. W.
,
1998
, “
Damage-Free Separation of GaN Thin Films From Sapphire Substrates
,”
Appl. Phys. Lett.
,
72
(
5
), pp.
599
601
.
8.
Haerle
,
V.
,
Hahn
,
B.
,
Kaiser
,
S.
,
Weimar
,
A.
,
Bader
,
S.
,
Eberhard
,
F.
,
Plössl
,
A.
, and
Eisert
,
D.
,
2004
, “
High Brightness LEDs for General Lighting Application Using the New ThinGaN Technology
,”
Phys. Status Solidi A
,
201
(
12
), pp.
2736
2739
.
9.
Chen
,
L. C.
, and
Ho
,
Y. M.
,
2007
, “
Ag and Zinc Oxide-Doped Indium Oxide Ohmic Contacts to p-Type GaN for Flip-Chip LED Applications
,”
J. Phys. D Appl. Phys.
,
40
, pp.
6514
6517
.
10.
Shen
,
C. F.
,
Chang
,
S. J.
,
Chen
,
W. S.
,
Ko
,
T. K.
,
Kuo
,
C. T.
, and
Shei
,
S. C.
,
2007
, “
Nitride-Based High-Power Flip-Chip LED With Double-Side Patterned Sapphire Substrate
,”
IEEE Photonics Technol. Lett.
,
19
(
10
), pp.
780
782
.
11.
Taylor
,
S. H.
, and
Garimella
,
S. V.
,
2014
, “
Void Detection in Dielectric Films Using a Floating Network of Substrate-Embedded Electrodes
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041007
.
12.
Zhang
,
R.
,
Cai
,
J.
,
Wang
,
Q.
,
Li
,
J.
,
Hu
,
Y.
,
Du
,
H.
, and
Li
,
L.
,
2014
, “
Thermal Resistance Analysis of Sn-Bi Solder Paste Used as Thermal Interface Material for Power Electronics Applications
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011012
.
13.
IBM Research
, “
Thermal Interface Materials
,”
IBM
,
Armonk, NY
, http://www.zurich.ibm.com/st/cooling/tim.html, last accessed on Dec. 22, 2012.
14.
Nguyen
,
N. T.
,
Ri
,
S.-G.
,
Nagata
,
T.
,
Ishibashi
,
K.
,
Takahashi
,
K.
,
Tsunekawa
,
Y.
,
Suzuki
,
S.
, and
Chikyow
,
T.
,
2014
, “
Epitaxial Growth of Nonpolar ZnO and n-ZnO/i-ZnO/p-GaN Heterostructure on Si(001) for Ultraviolet Light Emitting Diodes
,”
Appl. Phys. Express
,
7
(
6
), p.
062102
.
15.
Arya
,
S. P. S.
, and
Srivastava
,
O. N.
,
1988
, “
Investigation on Synthesis, Characterization, and Electronic Behavior of Zinc Oxide Thin Films in Relation to Fabrication of Oxygen Gas Sensor
,”
Cryst. Res. Technol.
,
23
(
5
), pp.
669
675
.
16.
Shamungan
,
S.
,
Mutharasu
,
D.
, and
Hassan
,
D. H. A.
,
2013
, “
Performance of High Power Light Emitting Diode for Various Zinc Oxide Film Thickness as Thermal Interface Material
,”
Int. J. Res. Eng. Technol.
,
2
(10), pp.
113
119
.
17.
Shanmugan
,
S.
,
Mutharasu
,
D.
, and
Haslan
,
A. H.
,
2013
, “
A Study on AlN Thin Film as Thermal Interface Material for High Power LED
,”
Int. J. Electron. Comput. Sci. Eng.
,
2
(
1
), pp.
296
300
.
18.
Shanmugan
,
S.
, and
Mutharasu
,
D.
,
2014
, “
Thermal Resistance Analysis of High Power Light Emitting Diode Using Aluminum Nitride Thin Film-Coated Copper Substrates as Heat Sink
,”
ASME J. Electron. Packag.
,
136
(
3
), p.
034502
.
19.
Mutharasu
,
D.
,
Shanmugan
,
S.
,
Anithambigai
,
P.
, and
Zeng Yin
,
O.
,
2013
, “
Performance Testing of 3-W LED Mounted on ZnO Thin Film Coated Al as Heat Sink Using Dual Interface Method
,”
IEEE Trans. Electron Devices
,
60
(
7
), pp.
2290
2295
.
20.
Fletcher
,
L. S.
,
1990
, “
A Review of Thermal Enhancement Techniques for Electronic System
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
13
(
4
), pp.
1012
1021
.
21.
Prasher
,
R.
,
2006
, “
Thermal Interface Material: Historical Perspective, Status and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
22.
Vermeersch
,
B.
, and
De Mey
,
G.
,
2007
, “
Influence of Thermal Contact Resistance on Thermal Impedance of Microelectronic Structures
,”
Microelectron. Reliab.
,
47
(
8
), pp.
1233
1238
.
23.
Huang
,
Z. X.
,
Tang
,
Z. A.
,
Yu
,
J.
, and
Bai
,
S.
,
2011
, “
Thermal Conductivity of Nanoscale Polycrystalline ZnO Thin Films
,”
Phys. B
,
406
(
4
), pp.
818
823
.
24.
Kadoya
,
K.
,
Matsunaga
,
N.
, and
Nagashima
,
A.
,
1985
, “
Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase
,”
J. Phys. Chem.
,
14
(
4
), pp.
947
970
.
25.
Rosa
,
A. M.
,
da Silva
,
E. P.
,
Amorim
,
E.
,
Chaves
,
M.
,
Catto
,
A. C.
,
Lisboa-Filho
,
P. N.
, and
Bortoleto
,
J. R. R.
,
2012
, “
Growth Evolution of ZnO Thin Films Deposited by RF Magnetron Sputtering
,”
J. Phys.: Conf. Ser.
,
370
, p.
012020
.
26.
Singhal
,
V.
,
Litke
,
P. J.
,
Black
,
A. F.
, and
Garimella
,
S. V.
,
2005
,
An Experimentally Validated Thermo-mechanical Model for the Prediction of Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
48
(25–26), pp.
5446
5459
.
27.
DOE, 2008, “LED Measurement Series: Color Rendering Index and LEDs,” U.S. Department of Energy, Washington, DC, http://cool.conservation-us.org/byorg/us-doe/color_rendering_index.pdf accessed on Nov. 11, 2013.
You do not currently have access to this content.