Design rules for portable electronic device are continuously striving for thinner printed wiring assemblies (PWAs) and smaller clearances because of ever-increasing demand for functionality and miniaturization. As a result, during accidental drop and impact events, there is an increased probability of internal secondary impact between a PWA and adjacent internal structures. In particular, compared to the initial impact, acceleration pulses caused by contact during secondary impacts are typically characterized by significant increase of amplitudes and frequency bandwidth. The resonant response in the thickness direction of printed wiring boards (PWBs) (termed the dynamic “breathing mode” of response, in this study) acts as a mechanical bandpass filter and places miniature internal structures in some components (such as microelectromechanical systems (MEMS)) at risk of failure, if any of them have resonant frequencies within the transmitted frequency bandwidth. This study is the first part of a two-part series, presenting qualitative parametric insights into the effect of secondary impacts in a PWA. This first part focuses on analyzing the frequency spectrum of: (i) the impulse caused by secondary impact, (ii) the energy transmitted by the dynamic “breathing” response of multilayer PWBs, and (iii) the consequential dynamic response of typical structures with high resonant frequencies that are mounted on the PWB. Examples include internal deformable structures in typical surface mount technology (SMT) components and in MEMS components. The second part of this series will further explore the effects of the breathing mode of vibration on failures of various SMT components of different frequencies.

References

References
1.
Li
,
G.
, and
Shemansky
,
F.
, Jr.
,
2000
, “
Drop Test and Analysis on Micro-Machined Structures
,”
Sens. Actuators Phys.
,
85
(
1–3
), pp.
280
286
.
2.
Mattila
,
T. T.
,
Vajavaara
,
L.
,
Hokka
,
J.
,
Hussa
,
E.
,
Makela
,
M.
, and
Halkola
,
V.
,
2013
, “
An Approach to Board-Level Drop Reliability Evaluation With Improved Correlation With Use Conditions
,”
IEEE 63rd Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
1259
1268
.
3.
Lall
,
P.
,
Shantaram
,
S.
,
Suhling
,
J.
, and
Locker
,
O.
,
2015
, “
Stress–Strain Behavior of SAC305 at High Strain Rates
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011010
.
4.
Lall
,
P.
,
Kothari
,
N.
, and
Glover
,
J.
,
2015
, “
Mechanical Shock Reliability Analysis and Multiphysics Modeling of MEMS Accelerometers in Harsh Environments
,”
ASME
Paper No. IPACK2015-48457.
5.
Raghunathan
,
N.
,
Tsutsui
,
W.
,
Chen
,
W.
, and
Peroulis
,
D.
,
2015
, “
A Single Crystal Silicon Low-g Switch Tolerant to Impact Accelerations up to 24,000 g
,”
18th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS
), Anchorage, AK, June 21–25, pp.
1144
1147
.
6.
Goyal
,
S.
,
Upasani
,
S.
, and
Patel
,
D. M.
,
1999
, “
Improving Impact Tolerance of Portable Electronic Products: Case Study of Cellular Phones
,”
Exp. Mech.
,
39
(
1
), pp.
43
52
.
7.
Lim
,
C. T.
,
Ang
,
C. W.
,
Tan
,
L. B.
,
Seah
,
S. K. W.
, and
Wong
,
E. H.
,
2003
, “
Drop Impact Survey of Portable Electronic Products
,”
53rd Electronic Components and Technology Conference
(
ECTC
), New Orleans, LA, May 27–30, pp.
113
120
.
8.
Meng
,
J.
, and
Dasgupta
,
A.
,
2015
, “
Influence of Secondary Impact on Failure Modes in PWAs With High Resonant Frequency
,”
ASME
Paper No. IPACK2015-48669.
9.
Togami
,
T. C.
,
Baker
,
W. E.
, and
Forrestal
,
M. J.
,
1996
, “
A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
353
356
.
10.
Danny
,
H. D.
, and
Frew
,
J.
,
2009
, “
A Modified Hopkinson Pressure Bar Experiment to Evaluate a Damped Piezoresistive MEMS Accelerometer
,”
SEM Annual Conference and Exposition on Experimental and Applied Mechanics
(
SEM 2009
), Albuquereque, NM, June 1–4.
11.
Pandey
,
M.
,
Aubin
,
K.
,
Zalalutdinov
,
M.
,
Reichenbach
,
R. B.
,
Zehnder
,
A. T.
,
Rand
,
R. H.
, and
Craighead
,
H. G.
,
2006
, “
Analysis of Frequency Locking in Optically Driven MEMS Resonators
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1546
1554
.
12.
Zhou
,
Z. J.
,
Rufer
,
L.
,
Salze
,
E.
,
Ollivier
,
S.
, and
Wong
,
M.
,
2013
, “
Wide-Band Aero-Acoustic Microphone With Improved Low-Frequency Characteristics
,”
2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS EUROSENSORS XXVII
), Barcelona, Spain, June 16–20, pp.
1835
1838
.
13.
Shah
,
A. H.
, and
Datta
,
S. K.
,
1982
, “
Harmonic Waves in a Periodically Laminated Medium
,”
Int. J. Solids Struct.
,
18
(
5
), pp.
397
410
.
14.
Podlipenets
,
A. N.
,
1984
, “
Propagation of Harmonic Waves in Orthotropic Materials With a Periodic Structure
,”
Sov. Appl. Mech.
,
20
(
7
), pp.
604
607
.
15.
Sun
,
C.-T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Time-Harmonic Waves in a Stratified Medium Propagating in the Direction of the Layering
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
408
411
.
16.
Hu
,
B.
,
Schiehlen
,
W.
, and
Eberhard
,
P.
,
2003
, “
Comparison of Analytical and Experimental Results for Longitudinal Impacts on Elastic Rods
,”
J. Vib. Control
,
9
(
1–2
), pp.
157
174
.
17.
Alsaleem
,
F.
,
Younis
,
M. I.
, and
Miles
,
R.
,
2008
, “
An Investigation Into the Effect of the PCB Motion on the Dynamic Response of MEMS Devices Under Mechanical Shock Loads
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031002
.
18.
Meng
,
J.
,
Mattila
,
T.
,
Dasgupta
,
A.
,
Sillanpaa
,
M.
,
Jaakkola
,
R.
,
Luo
,
G.
, and
Andersson
,
K.
,
2012
, “
Drop Qualification of MEMS Components in Handheld Electronics at Extremely High Accelerations
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1020
1027
.
19.
Douglas
,
S. T.
,
Al-Bassyiouni
,
M.
, and
Dasgupta
,
A.
,
2014
, “
Experiment and Simulation of Board Level Drop Tests With Intentional Board Slap at High Impact Accelerations
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
4
), pp.
569
580
.
20.
Douglas
,
S. T.
,
Al-Bassyiouni
,
M.
,
Dasgupta
,
A.
,
Gilman
,
K.
, and
Brown
,
A.
,
2015
, “
Simulation of Secondary Contact to Generate Very High Accelerations
,”
ASME J. Electron. Packag.
,
137
(
3
), p.
031011
.
21.
Meng
,
J.
,
Mattila
,
T.
,
Dasgupta
,
A.
,
Sillanpaa
,
M.
,
Jaakkola
,
R.
,
Andersson
,
K.
,
Jaakkola
,
R.
, and
Hussa
,
E.
,
2012
, “
Testing and Multi-Scale Modeling of Drop and Impact Loading of Complex MEMS Microphone Assemblies
,”
13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Cascais, Portugal, Apr. 16–18, pp.
1/8
8/8
.
22.
Zhang
,
A.
,
2014
, “
High Acceleration Board Level Reliability Drop Test Using Dual Mass Shock Amplifier
,”
IEEE 64th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 27–30, pp.
1441
1448
.
23.
Habtour
,
E.
,
Paulus
,
M.
, and
Dasgupta
,
A.
,
2014
, “
Modeling Approach for Predicting the Rate of Frequency Change of Notched Beam Exposed to Gaussian Random Excitation
,”
Shock Vib.
,
2014
(
2014
), p.
e164039
.
24.
Morales
,
A. L.
,
Nieto
,
A. J.
,
Chicharro
,
J. M.
, and
Pintado
,
P.
,
2015
, “
An Adaptive Pneumatic System for the Attenuation of Random Vibrations
,”
J. Vib. Control
,
21
(
5
), pp.
907
918
.
25.
Tee
,
T. Y.
,
Luan
,
J.
,
Pek
,
E.
,
Lim
,
C.-T.
, and
Zhong
,
Z.
,
2004
, “
Advanced Experimental and Simulation Techniques for Analysis of Dynamic Responses During Drop Impact
,”
54th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 1–4, Vol.
1
, pp.
1088
1094
.
26.
Balachandran
,
B.
, and
Magrab
,
E.
,
2008
,
Vibrations
,
Cengage Learning
, Boston.
27.
Dassault
,
2012
, “
Contact Pressure-Overclosure Relationships
,” Dassault Systemes, Vélizy-Villacoublay, France.
28.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London. Math. Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
.
29.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1999
, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
,
121
(
2
), pp.
234
239
.
30.
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2005
, “
Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale
,”
ASME J. Vib. Acoust.
,
127
(
1
), pp.
52
60
.
31.
Timoshenko
,
S. P.
,
1990
,
Vibration Problems in Engineering
,
Wiley
, Hoboken, NJ.
32.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
,
Courier
, New York.
33.
Liu
,
J.
,
Martin
,
D. T.
,
Kadirvel
,
K.
,
Nishida
,
T.
,
Cattafesta
,
L.
,
Sheplak
,
M.
, and
Mann
,
B. P.
,
2008
, “
Nonlinear Model and System Identification of a Capacitive Dual-Backplate MEMS Microphone
,”
J. Sound Vib.
,
309
(
1–2
), pp.
276
292
.
You do not currently have access to this content.