This study investigates the reliability of low melt alloys (LMAs) containing gallium (Ga), indium (In), bismuth (Bi), and tin (Sn) for the application as Thermal interface materials (TIMs). The analysis described herein involved the in situ thermal performance of the LMAs as well as performance evaluation after accelerated life cycle testing, which included high temperature aging at 130 °C and thermal cycling from −40 °C to 80 °C. Three alloys (75.5Ga & 24.5In, 100Ga, and 51In, 32.5Bi & 16.5Sn) were chosen for testing the thermal performance. Testing methodologies used follow ASTM D5470 protocols and the performance of LMAs is compared with some high-performing commercially available TIMs. Results show that LMAs can offer extremely low (<0.01 cm2 °C/W) thermal resistance compared to any commercial TIMs. The LMA–substrate interactions were explored using different surface treatments (copper and tungsten). Measurements show that depending on the substrate–alloy combinations, the proposed alloys survive 1500 hrs of aging at 130 °C and 1000 cycles from −40 °C to 80 °C without significant performance degradation. The obtained results indicate the LMAs are very efficient as TIMs.

References

1.
Guenin
,
B.
,
2014
, “
Use of the Monte Carlo Method in Packaging Thermal Calculations
,”
Electron. Cooling
, Dec., epub.
2.
Bar-Cohen
,
A.
,
Kaiser
,
M.
, and
Sreekant
,
N.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
3.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Nguyen
,
J. L.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Investigation Into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
85
, pp.
996
1002
.
4.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
.
5.
Liu
,
Z.
, and
Chung
,
D. D.
,
2006
, “
Boron Nitride Particle Filled Paraffin Wax as a Phase-Change Thermal Interface Material
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
319
323
.
6.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
7.
McNamara
,
A. J.
,
Joshi
,
Y.
,
Zhang
,
Z.
,
Moon
,
K.-S.
,
Lin
,
Z.
,
Yao
,
Y.
,
Wong
,
C.-P.
, and
Lin
,
W.
,
2015
, “
Double-Sided Transferred Carbon Nanotube Arrays for Improved Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
137
(
3
), p.
031014
.
8.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
,”
Nano Lett.
,
12
(
2
), pp.
861
867
.
9.
Hone
,
J.
,
Llaguno
,
M. C.
,
Biercuk
,
M. J.
,
Johnson
,
A. T.
,
Batlogg
,
B.
,
Benes
,
Z.
, and
Fischer
,
J. E.
,
2002
, “
Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials
,”
Appl. Phys. A
,
74
(
3
), pp.
339
343
.
10.
Webb
,
R. L.
, and
Gwinn
,
J. P.
,
2002
, “
Low Melting Point Thermal Interface Material
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2002
), San Diego, CA, June 1, pp.
671
676
.
11.
Macris
,
C. G.
,
Sanderson
,
T. R.
,
Ebel
,
R. G.
,
Leyerle
,
C. B.
, and
Enerdyne Solutions
,
2004
, “
Performance, Reliability, and Approaches Using a Low Melt Alloy as a Thermal Interface Material
,” 37th International Symposium on Microelectronics (
IMAPS 2004
), Long Beach, CA, Nov. 14-18.
12.
Martin
,
Y.
, and
Van Kessel
,
T.
,
2007
, “
High Performance Liquid Metal Thermal Interface for Large Volume Production
,” 40th International Symposium on Microelectronics (
IMAPS 2007
),
San Jose, CA
, Nov. 11–15.
13.
Hill
,
R. F.
, and
Strader
,
J. L.
,
2006
, “
Practical Utilization of Low Melting Alloy Thermal Interface Materials
,”
22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Dallas, TX, Mar. 14–16, pp.
23
27
.
14.
Carlberg
,
B.
,
Wang
,
T.
,
Fu
,
Y.
,
Liu
,
J.
, and
Shangguan
,
D.
,
2008
, “
Nanostructured Polymer–Metal Composite for Thermal Interface Material Applications
,”
58th Electronic Components and Technology Conference
(
ECTC 2008
), Lake Buena Vista, FL, May 27–30, pp.
191
197
.
15.
Hamdan
,
A.
,
McLanahan
,
A.
,
Richards
,
R.
, and
Richards
,
C.
,
2011
, “
Characterization of a Liquid–Metal Microdroplet Thermal Interface Material
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1250
1254
.
16.
Analysis Tech
,
2012
, “
Material Thermal Testers: TIM Tester 1400 Specifications
,”
Analysis Tech Inc.
, Wakefield, MA.
17.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M.
,
Johnson
,
W. R.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Performance of Low Melt Alloys as Thermal Interface Materials
,”
31st Annual Semiconductor Thermal Measurement and Management Symposium
(SEMI-THERM)
, San Jose, CA, Mar. 15–19, pp. 235–239.
18.
Yang
,
E.
,
Guo
,
H.
,
Guo
,
J.
,
Shang
,
J.
, and
Wang
,
M.
,
2014
, “
Thermal Performance of Low-Melting-Temperature Alloy Thermal Interface Materials
,”
Acta Metall. Sinica (Engl. Lett.)
,
27
(
2
), pp.
290
294
.
19.
Kim
,
D.-G.
,
Yoon
,
J.-W.
,
Lee
,
C.-Y.
, and
Jung
,
S.-B.
,
2003
, “
Reaction Diffusion and Formation of Cu11In9 and In27Ni10 Phases in the Couple of Indium-Substrates
,”
Mater. Trans.
,
44
(
1
), pp.
72
77
.
20.
Ancharov
,
A. I.
,
Grigoryeva
,
T. F.
,
Barinova
,
A. P.
, and
Boldyrev
,
V. V.
,
2008
, “
Interaction Between Copper and Gallium
,”
Russ. Metall.
,
2008
(
6
), pp.
475
479
.
21.
Okamoto
,
H.
,
2005
, “
Cu–In (Copper–Indium)
,”
J. Phase Equilib. Diffus.
,
26
(
6
), p.
645
.
22.
Li
,
J.-B.
,
Ji
,
L. N.
,
Liang
,
J. K.
,
Zhang
,
Y.
,
Luo
,
J.
,
Li
,
C. R.
, and
Rao
,
G. H.
,
2008
, “
A Thermodynamic Assessment of the Copper–Gallium System
,”
Calphad
,
32
(
2
), pp.
447
453
.
23.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C.-J.
,
2012
, “
Characterization of Nontoxic Liquid–Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.
You do not currently have access to this content.