Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) dissipate high power densities which generate hotspots and cause thermomechanical problems. Here, we propose and simulate GaN-based HEMT technologies that can remove power densities exceeding 30 kW/cm2 at relatively low mass flow rate and pressure drop. Thermal performance of the microcooler module is investigated by modeling both single- and two-phase flow conditions. A reduced-order modeling approach, based on an extensive literature review, is used to predict the appropriate range of heat transfer coefficients associated with the flow regimes for the flow conditions. Finite element simulations are performed to investigate the temperature distribution from GaN to parallel microchannels of the microcooler. Single- and two-phase conjugate computational fluid dynamics (CFD) simulations provide a lower bound of the total flow resistance in the microcooler as well as overall thermal resistance from GaN HEMT to working fluid. A parametric study is performed to optimize the thermal performance of the microcooler. The modeling results provide detailed flow conditions for the microcooler in order to investigate the required range of heat transfer coefficients for removal of heat fluxes up to 30 kW/cm2 and a junction temperature maintained below 250 °C. The detailed modeling results include local temperature and velocity fields in the microcooler module, which can help in identifying the approximate locations of the maximum velocity and recirculation regions that are susceptible to dryout conditions.

References

References
1.
Bar-Cohen
,
A.
,
John
,
D. A.
, and
Joseph
,
J. M.
,
2011
, “
Near-Junction Thermal Management for Wide Bandgap Devices
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Waikoloa, HI, Oct. 16–19.
2.
Pengelly
,
R. S.
,
Simon
,
M. W.
,
James
,
W. M.
,
Scott
,
T. S.
, and
William
,
L. P.
,
2012
, “
A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
6
), pp.
1764
1783
.
3.
Bar-Cohen
,
A.
, and
Peng
,
W.
,
2012
, “
Thermal Management of On-Chip Hot Spot
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051017
.
4.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
Cooling Limits for GaN HEMT Technology
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Monterey, CA, Oct. 13–16.
5.
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond
,”
J. Appl. Phys.
,
35
(
12
), pp.
3460
3466
.
6.
Liu
,
T.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Scholl
,
S.
,
Lee
,
H.
,
Won
,
Y.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Kazemi
,
H.
, and
Vanhille
,
K.
,
2015
, “
Full Scale Simulation of an Integrated Monolithic Heat Sink for Thermal Management of a High Power Density GaN-SiC Chip
,”
ASME
Paper No. IPACK2015-48592.
7.
Calame
,
J. P.
,
Myers
,
R. E.
,
Binari
,
S. C.
,
Wood
,
F. N.
, and
Garven
,
M.
,
2007
, “
Experimental Investigation of Microchannel Coolers for the High Heat Flux Thermal Management of GaN-on-SiC Semiconductor Devices
,”
Int. J. Heat Mass Transfer
,
50
(
23
), pp.
4767
4779
.
8.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081402
.
9.
Cetegen
,
E.
,
2008
, “
Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surfaces
,” Ph.D. dissertation, University of Maryland, College Park, MD.
10.
Linderman
,
R.
,
Brunschwiler
,
T.
,
Smith
,
B.
, and
Michel
,
B.
,
2007
, “
High-Performance Thermal Interface Technology Overview
,”
13th International Workshop on Thermal Investigation of ICs and Systems
(
THERMINIC 2007
), Budapest, Hungary, Sept. 17–19, pp.
129
134
.
11.
Madhour
,
Y.
,
Zervas
,
M. N.
,
Schlottig
,
G.
,
Brunschwiler
,
T.
,
Leblebici
,
Y.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2013
, “
Integration of Intra Chip Stack Fluidic Cooling Using Thin-Layer Solder Bonding
,”
IEEE International 3D Systems Integration Conference
(
3DIC
), San Francisco, CA, Oct. 2–4.
12.
Everhart
,
L.
,
Jankowski
,
N.
,
Geil
,
B.
,
Bayba
,
A.
,
Ibitayo
,
D.
, and
McCluskey
,
P.
,
2007
, “
Manifold Microchannel Cooler for Direct Backside Liquid Cooling of SiC Power Devices
,”
ASME
Paper No. ICNMM2007-30190.
13.
Dowling
,
K. M.
,
Suria
,
A. J.
,
Won
,
Y.
,
Shankar
,
A.
,
Lee
,
H.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Senesky
,
D. G.
,
2015
, “
Inductive Coupled Plasma Etching of High Aspect Ratio Silicon Carbide Microchannels for Localized Cooling
,”
ASME
Paper No. IPACK2015-48409.
14.
Lee
,
H.
,
Park
,
I.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
,
2014
, “
Micro-Channel Evaporator for Space Applications—2. Assessment of Predictive Tools
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1231
1249
.
15.
Costa-Patry
,
E.
, and
Thome
,
J. R.
,
2013
, “
Flow Pattern-Based Flow Boiling Heat Transfer Model for Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
414
420
.
16.
Lee
,
H.
,
Park
,
I.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
,
2014
, “
Micro-Channel Evaporator for Space Applications—1. Experimental Pressure Drop and Heat Transfer Results for Different Orientations in Earth Gravity
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1213
1230
.
17.
Houshmand
,
F.
,
Lee
,
H.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
High Heat Flux Subcooled Flow Boiling of Methanol in Microtubes
,”
ASME
Paper No. IPACK2015-48734.
18.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II. Two-Phase Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1239
1256
.
19.
Bertsch
,
S. S.
,
Eckhard
,
A. G.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(
7
), pp.
2110
2118
.
20.
Cioncolini
,
A.
, and
Thome
,
J. R.
,
2011
, “
Algebraic Turbulence Modeling in Adiabatic and Evaporating Annular Two-Phase Flow
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
805
817
.
21.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
,
2002
, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
(
1
), pp.
53
64
.
22.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Multiphase Transport: Fundamentals, Reactor Safety, Applications
, Vol. 1, T. N. Veziroğlu, ed., Hemisphere, Washington, DC, pp.
407
431
.
23.
ANSYS
,
2009
, “
ANSYS FLUENT 12.1 in Workbench User's Guide
,”
ANSYS, Inc.
,
Canonsburg, PA
.
24.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
25.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
27.
Kharangate
,
C. R.
,
Lee
,
H.
, and
Mudawar
,
I.
,
2015
, “
Computational Modeling of Turbulent Evaporating Falling Films
,”
Int. J. Heat Mass Transfer
,
81
, pp.
52
62
.
28.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods in Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Academic Press
,
New York
, pp.
273
285
.
29.
Gorle
,
C.
,
Lee
,
H.
,
Houshmand
,
F.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Parida
,
P. R.
,
2015
, “
Validation Study for VOF Simulations of Boiling in a Micro-Channel
,”
ASME
Paper No. IPACK2015-48129.
30.
Lee
,
H.
,
Kharangate
,
C. R.
,
Mascarenhas
,
N.
,
Park
,
I.
, and
Mudawar
,
I.
,
2015
, “
Experimental and Computational Investigation of Vertical Downflow Condensation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
865
879
.
31.
Agostini
,
B.
, and
Bontemps
,
A.
,
2005
, “
Vertical Flow Boiling of Refrigerant R134a in Small Channels
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
296
306
.
32.
Oh
,
H. K.
, and
Son
,
C. H.
,
2011
, “
Flow Boiling Heat Transfer and Pressure Drop Characteristics of CO2 in Horizontal Tube of 4.57-mm Inner Diameter
,”
Appl. Therm. Eng.
,
31
(
2
), pp.
163
172
.
33.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part II: Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
597
611
.
34.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
35.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2012
, “
Flow Regime-Based Modeling of Heat Transfer and Pressure Drop in Microchannel Flow Boiling
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1246
1260
.
36.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
,
88
(
1
), pp.
185
196
.
You do not currently have access to this content.