We demonstrate the lid-integral silicon cold-plate topology as a way to bring liquid cooling closer to the heat source integrated circuit (IC). It allows us to eliminate one thermal interface material (TIM2), to establish and improve TIM1 during packaging, to use wafer-level processes, and to ease integration in first-level packaging. We describe the integration and analyze the reliability aspects of this package using modeling and test vehicles. To compare the impact of geometry, materials, and mechanical coupling on warpage, strains, and stresses, we simulate finite element models of five different topologies on an organic land-grid array (LGA) carrier. We measure the thermal performance in terms of thermal resistance from cold-plate base to inlet liquid and obtain 15 mm2 K/W at 30 kPa pressure drop across the package. We build two different topologies using silicon cold-plates and injection-molded lids. Gasket-attached cold-plates pass an 800 kPa pressure test, and direct-attached cold-plates fracture in the cold-plate. The results advise to use a compliant layer between cold-plate and manifold lid and promise a uniformly thick TIM1 layer in the Si–Si matched topology. The work shows the feasibility of composite lids with integrated silicon cold-plates in high heat flux applications.

References

References
1.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Zimmermann
,
S.
,
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2015
, “
Energy Efficient Hotspot-Targeted Embedded Liquid Cooling of Electronics
,”
Appl. Energy
,
138
, pp.
414
422
.
3.
Schultz
,
M.
,
Gaynes
,
M.
,
Parida
,
P.
, and
Chainer
,
T.
,
2014
, “
Experimental Investigation of Direct Attach Microprocessors in a Liquid-Cooled Chiller-Less Data Center
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
729
735
.
4.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W. S.
,
LaBianca
,
N. C.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K. C.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R. R.
,
2007
, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
218
225
.
5.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Paredes
,
S.
,
Michel
,
B.
,
Colgan
,
E.
, and
Bezama
,
P.
,
2009
, “
Hotspot-Adapted Cold-Plates to Maximize System Efficiency
,”
15th International Workshop on Thermal Investigations of ICs and Systems,
(
THERMINIC
), Leuven, Belgium, Oct. 7–9, pp.
150
156
.
6.
Li
,
N.
,
Schlottig
,
G.
,
De-Fazio
,
M.
,
Sharma
,
C.
,
Tiwari
,
M.
,
Brioschi
,
R.
,
Poulikakos
,
D.
, and
Brunschwiler
,
T.
,
2013
, “
Hybrid Porous Media and Fluid Domain Modeling Strategy to Optimize a Novel Staggered Fin Heat Sink Design
,”
19th International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC
), Berlin, Sept. 25–27, pp.
224
230
.
7.
Brunschwiler
,
T.
,
2012
, “
Interlayer Thermal Management of High-Performance Microprocessor Chip Stacks
,” Ph.D. thesis, Technische Universität, Berlin.
8.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081402
.
You do not currently have access to this content.