A fully dynamic model of a microchannel evaporator is presented. The aim of the model is to study the highly dynamic parallel channel instabilities that occur in these evaporators in more detail. The numerical solver for the model is custom-built and the majority of the paper is focused on detailing the various aspects of this solver. The one-dimensional homogeneous two-phase flow conservation equations are solved to simulate the flow. The full three-dimensional (3D) conduction domain of the evaporator is also dynamically resolved. This allows for the correct simulation of the complex hydraulic and thermal interactions between the microchannels that give rise to the parallel channel instabilities. The model uses state-of-the-art correlations to calculate the frictional pressure losses and heat transfer in the microchannels. In addition, a model for inlet restrictions is also included to simulate the stabilizing effect of these components. In the final part of the paper, validation results of the model are presented, in which the stability results of the model are compared with the existing experimental data from the literature. Next, a parametric study is performed focusing on the stabilizing effects of the solid substrate properties. It is found that increasing the thermal conductivity and thickness of the solid substrate has a strong stabilizing effect, while increasing the number of microchannels has a small destabilizing effect. Finally, representative dynamic results are also given to demonstrate some of the unique capabilities of the model.

References

References
1.
Agostini
,
B.
,
Thome
,
J.
,
Fabbri
,
M.
, and
Michel
,
B.
,
2008
, “
High Heat Flux Two-Phase Cooling in Silicon Multimicrochannels
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp.
691
701
.
2.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J.
,
Wojtan
,
L.
,
Thome
,
J.
, and
Michel
,
B.
,
2007
, “
State of the Art High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
3.
Thome
,
J.
,
2006
, “
State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
9
), pp.
4
19
.
4.
Baldassari
,
C.
, and
Marengo
,
M.
,
2013
, “
Flow Boiling in Microchannels and Microgravity
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
1
36
.
5.
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
,
2013
, “
Flow Boiling in Micro-Scale Channels—Synthesized Literature Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
301
324
.
6.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.
7.
Bergles
,
A.
, and
Kandlikar
,
S.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
8.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(10–11), pp.
2045
2059
.
9.
Natan
,
S.
,
Barnea
,
D.
, and
Taitel
,
Y.
,
2003
, “
Direct Steam Generation in Parallel Pipes
,”
Int. J. Multiphase Flow
,
29
(
11
), pp.
1669
1683
.
10.
Ozawa
,
M.
,
Akagawa
,
K.
, and
Sakaguchi
,
T.
,
1989
, “
Flow Instabilities in Parallel-Channel Flow Systems of Gas–Liquid Two-Phase Mixtures
,”
Int. J. Multiphase Flow
,
15
(
4
), pp.
639
657
.
11.
Akagawa
,
K.
,
Sakaguchi
,
T.
,
Kono
,
M.
, and
Nishimura
,
M.
,
1971
, “
Study on Distribution of Flow Rates and Flow Stabilities in Parallel Long Evaporators
,”
Bull. JSME
,
14
(
74
), pp.
837
848
.
12.
Baikin
,
M.
,
Taitel
,
Y.
, and
Barnea
,
D.
,
2011
, “
Flow Rate Distribution in Parallel Heated Pipes
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4448
4457
.
13.
Zhang
,
T.
,
Wen
,
J.
,
Julius
,
A.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2011
, “
Stability Analysis and Maldistribution Control of Two-Phase Flow in Parallel Evaporating Channels
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5298
5305
.
14.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.
15.
Kandlikar
,
S.
,
Kuan
,
W.
,
Willistein
,
D.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
16.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J.
,
2013
, “
Two-Phase Flow Operational Maps for Multi-Microchannel Evaporators
,”
Int. J. Heat Fluid Flow
,
42
, pp.
176
189
.
17.
Triplett
,
K.
,
Ghiaasiaan
,
S.
,
Abdel-Khalik
,
S.
,
LeMouel
,
A.
, and
McCord
,
B.
,
1999
, “
Gas–Liquid Two-Phase Flow in Microchannels: Part II: Void Fraction and Pressure Drop
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
395
410
.
18.
Chung
,
P.
, and
Kawaji
,
M.
,
2004
, “
The Effect of Channel Diameter on Adiabatic Two-Phase Flow Characteristics in Microchannels
,”
Int. J. Multiphase Flow
,
30
(7–8), pp.
735
761
.
19.
Revellin
,
R.
,
Dupont
,
V.
,
Ursenbacher
,
T.
,
Thome
,
J.
, and
Zun
,
I.
,
2006
, “
Characterization of Diabatic Two-Phase Flows in Microchannels: Flow Parameter Results for R-134a in a 0.5 mm Channel
,”
Int. J. Multiphase Flow
,
32
(
7
), pp.
755
774
.
20.
Ong
,
C.
, and
Thome
,
J.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
37
47
.
21.
Lamaison
,
N.
,
Marcinichen
,
J.
, and
Thome
,
J.
,
2013
, “
Two-Phase Flow Control of Electronics Cooling With Pseudo-CPUs in Parallel Flow Circuits: Dynamic Modeling and Experimental Evaluation
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030908
.
22.
Saenen
,
T.
, and
Baelmans
,
M.
,
2012
, “
Numerical Model of a Two-Phase Microchannel Heat Sink Electronics Cooling System
,”
Int. J. Therm. Sci.
,
59
, pp.
214
223
.
23.
Muzychka
,
Y.
, and
Yovanovich
,
M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111105
.
24.
Petukhov
,
B.
, and
Popov
,
V.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
25.
Chiccitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
,
1960
, “
Two-Phase Cooling Experiments-Pressure Drop, Heat Transfer and Burnout Measurements
,”
Energ. Nucl.
,
7
(
6
), pp.
407
425
.
26.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part 1—Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
928
940
.
27.
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J.
,
2006
, “
An Analysis of Experimental Data and Prediction Methods for Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer in Micro-Scale Channels
,”
Exp. Therm. Fluid Sci.
,
31
(
1
), pp.
1
19
.
28.
Costa-Patry
,
E.
,
Olivier
,
J.
,
Michel
,
B.
, and
Thome
,
J.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm Wide Multi-Microchannels: Part 1—Pressure Drop
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
451
463
.
29.
Kays
,
W.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple Tube Systems
,”
Trans. ASME
,
72
, pp.
1067
1074
.
30.
Abdelall
,
F.
,
Hahn
,
G.
,
Ghiaasiaan
,
S.
,
Abdel-Khalik
,
S.
,
Jeter
,
S.
,
Yoda
,
M.
, and
Sadowski
,
D.
,
2005
, “
Pressure Drop Caused by Abrupt Flow Area Changes in Small Channels
,”
Exp. Therm. Fluid Sci.
,
29
(
4
), pp.
425
434
.
31.
Liu
,
D.
,
Lee
,
P.
, and
Garimella
,
S.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(25–26), pp.
5134
5149
.
32.
Ong
,
C.
, and
Thome
,
J.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 2—Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.
33.
Muzychka
,
Y.
, and
Yovanovich
,
M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.
34.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
35.
Costa-Patry
,
E.
, and
Thome
,
J.
,
2013
, “
Flow Pattern-Base Flow Boiling Heat Transfer Model for Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
414
420
.
36.
Thome
,
J.
,
Dupont
,
V.
, and
Jacobi
,
A.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part 1: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(14–16), pp.
3375
3385
.
37.
Cioncolini
,
A.
, and
Thome
,
J.
,
2011
, “
Algebraic Turbulence Modeling in Adiabatic and Evaporating Annular Two-Phase Flow
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
805
817
.
38.
Waterson
,
N.
,
2008
, “
A Symmetric Formulation for Flux-Limited Convection Schemes
,”
Int. J. Numer. Methods Fluids
,
56
(
8
), pp.
1575
1581
.
39.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
40.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
, Version 8.0,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
41.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100μm2 Silicon Multi-Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
402
413
.
You do not currently have access to this content.