This paper presents an integrated approach combining principal component analysis (PCA) and Taguchi methods to develop a ball grid array (BGA), gold (Au) wire bonding process with multiple quality characteristics optimization. Eight main process factors of BGA wire bonding technology are selected as the control factors for parameter design. They are the factor A (seating ultrasonic generator (USG)), factor B (TIP height), factor C (C/V), factor D (USG current), factor E (USG bond time), factor F (bond force), factor G (FS threshold), and factor H (FAB size). The quality characteristics of the process in the study, including the wire pull strength, the ball shear strength, the ball thickness difference, the ball size difference, and the percentage of the Au–Al intermetallic compound (IMC) are measured. The optimal process parameters that meet the requirements for multiple quality characteristics are A1B3C1D3E3F1G1H2. They are then used to be tested for verification. Experimental results confirm that the optimal process design indeed enhances the quality characteristics investigated. The analysis of variance (ANOVA) results also show that the most important control factors affecting the quality characteristics are factor B (TIP height), factor C (C/V), and factor G (FS threshold), which accounts for 72.34% of total process variance. Thus, they must be strictly monitored during processing.

References

References
1.
Shah
,
G. N.
,
Levine
,
L. R.
, and
Patel
,
D. I.
,
1988
, “
Advances in Wire Bonding Technology for High Lead Count
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
11
(
3
), pp.
233
239
.
2.
Tan
,
J.
,
Zhong
,
Z. W.
, and
Ho
,
H. M.
,
2005
, “
Wire-Bonding Process Development for Low-K Materials
,”
J. Microelectron. Eng.
,
81
(
1
), pp.
75
82
.
3.
Shen
,
L.
,
Gumaste
,
V.
,
Poddar
,
A.
, and
Nguyen
,
L.
,
2006
, “
Effect of Pad Stacks on Dielectric Layer Failure During Wire Bonding
,”
IEEE 56th Proceedings of Electronic Components and Technology Conference
(
ECTC
),
San Diego, CA
, May 30–June 2, p.
6
.
4.
Ikeda
,
T.
,
Miyazaki
,
N.
,
Kudo
,
K.
,
Arita
,
K.
, and
Yakiyama
,
H.
,
1999
, “
Failure Estimation of Semiconductor Chip During Wire Bonding Process
,”
ASME J. Electron. Packag.
,
121
(
2
), pp.
85
91
.
5.
Shu
,
B.
,
1991
, “
Fine Pitch Wire Bonding Development Using a New Multipurpose, Multi-Pad Pitch Test Die
,”
IEEE 41st Proceedings of Electronic Component and Technology Conference
(
ECTC
),
Atlanta, GA
, May 11–16, pp.
511
518
.
6.
Groover
,
R.
,
Shu
,
W. K.
, and
Lee
,
S. S.
,
1994
, “
Wire Bond Loop Profile Development for Fine Pitch Long Wire Assembly
,”
IEEE Trans. Semicond. Manuf.
,
7
(
3
), pp.
393
399
.
7.
Shu
,
W. K.
,
1993
, “
PBGA Array Wire Bonding Development
,”
IEEE 46th Proceedings of Electronic Components and Technology Conference
(
ECTC
),
Orlando, FL
, May 28–31, pp.
219
225
.
8.
Shu
,
W. K.
,
1995
, “
Fine Pitch Wire Bonding Development Using Statistical Design of Experiment
,”
IEEE 45th Proceedings of Electronic Components and Technology Conference
(
ECTC
),
Las Vegas, NV
, May 21–24, pp.
91
101
.
9.
Wang
,
F.
,
Tang
,
W.
,
Li
,
J.
, and
Han
,
L.
,
2013
, “
Variable-Length Link-Spring Model for Kink Formation During Wire Bonding
,”
ASME J. Electron. Packag.
,
135
(
4
), pp.
2156
3950
.
10.
Wang
,
F.
, and
Fan
,
D.
,
2015
, “
Modeling and Experimental Study of a Wire Clamp for Wire Bonding
,”
ASME J. Electron. Packag.
,
137
(
1
), p. 011012.
11.
Thor
,
R. M.
, and
Marquez
,
Y. R.
,
1994
, “
Optimizing Wire Bond Parameters Using Response Surface Methodology
,” Motorola Philippines, Manila.
12.
Su
,
C. T.
, and
Chiang
,
T. L.
,
2002
, “
Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
(
1
), pp.
13
18
.
13.
Wang
,
Y.
,
Xiong
,
Z.
,
Zou
,
X.
, and
Ding
,
H.
,
2006
, “
Experimental Optimization of Process Parameters for Diode Laser Soldering of BGA
,”
International Symposium on High Density Microsystem Design and Packaging and Component Failure Analysis
(
HDP'06
),
Shanghai, China
, June 27–30, pp.
171
176
.
14.
Gopalakrishnan
,
L.
, and
Srihari
,
K.
,
1999
, “
Process Development for Ball Grid Array Assembly Using a Design of Experiments Approach
,”
Int. J. Adv. Manuf. Technol.
,
15
(
8
), pp.
587
596
.
15.
Suwa
,
T.
, and
Hadim
,
H.
,
2007
, “
Multidisciplinary Electronic Package Design and Optimization Methodology Based on Genetic Algorithm
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
402
410
.
16.
Tomita
,
R. K.
,
Park
,
S. W.
, and
Sotomayor
,
O.
,
2002
, “
Analysis of Activated Sludge Process Using Multivariate Statistical Tools—A PCA Approach
,”
Chem. Eng. J.
,
90
(
3
), pp.
283
290
.
17.
Lall
,
P.
,
Shirgaokar
,
A.
, and
Arunachalam
,
D.
,
2009
, “
Principal Component Analysis Based Development of Norris–Landzberg Acceleration Factors and Goldmann Constants for Leadfree Electronics
,”
59th Electronic Components and Technology Conference
(
ECTC 2009
),
San Diego, CA
, May 26–29, pp.
251
261
.
18.
Lall
,
P.
,
Shirgaokar
,
A.
,
Arunachalam
,
D.
,
Suhling
,
J.
,
Strickland
,
M.
, and
Blanche
,
J.
,
2009
, “
PCR for Derivation of Parameter Dependencies, Thermo-Mechanical Norris-Landzberg Acceleration Factors, Goldmann Fatigue Constants for Leadfree Electronics
,”
ASME
Paper No. InterPACK2009-89329.
19.
Lall
,
P.
,
Shirgaokar
,
A.
,
Drake
,
L.
,
Moore
,
T.
, and
Suhling
,
J.
,
2008
, “
Principal Component Regression Models for Life Prediction of Plastic Ball Grid Arrays on Copper-Core and No-Core Assemblies
,”
11th Intersociety Conference on Thermal and Thermo-Mechanical Phenomena in Electronic Systems
(
ITHERM 2008
),
Orlando, FL
, May 28–31, pp.
770
785
.
20.
Lall
,
P.
,
Hariharan
,
G.
,
Shirgaokar
,
A.
,
Suhling
,
J.
,
Strickland
,
M.
, and
Blanche
,
J.
,
2007
, “
Thermo-Mechanical Reliability Based Part Selection Models for Addressing Part Obsolescence in CBGA, CCGA, FLEXBGA, and Flip-Chip Packages
,”
ASME
Paper No. IPACK2007-33832.
21.
Yang
,
J. G.
,
Zhang
,
J.
,
Yang
,
J. X.
, and
Huang
,
Y.
,
2012
, “
A Principal Component Analysis Based Fault Detection Method in Etch Process of Semiconductor Manufacturing
,”
Key Eng. Mater.
,
522
, pp.
793
798
.
22.
Wu
,
Y.
, and
Wu
,
A.
,
2000
,
Taguchi Methods for Robust Design
, American Society of Mechanical Engineers, Lewiston, NY.
23.
Wulff
,
F.
, and
Breach
,
C. D.
,
2006
, “
Measurement of Gold Ballbond Intermetallic Coverage
,”
Gold Bull.
,
39
(
4
), pp.
175
183
.
24.
Johnson
,
R. A.
, and
Wichern
,
D. W.
,
2002
,
Applied Multivariate Statistical Analysis
,
5th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Tzeng
,
Y. F.
, and
Chen
,
F. C.
,
2006
, “
Multi-Objective Process Optimization for Turning of Tool Steel
,”
Int. J. Mach. Machinabil. Mater.
,
1
(
1
), pp.
76
93
.
You do not currently have access to this content.