This study aims at investigating a polymer-based air-gap creation method for the packaging of microelectromechanical systems (MEMS), and exploring the chemical composition of the polymer residue on the final package. Polymer-based air-gap formation utilizes thermal decomposition of a sacrificial polymer, poly(propylene carbonate) (PPC), encapsulated within an overcoat polymer. BCB (Cyclotene 4026-46) was used as the overcoat material because decomposition products of sacrificial polymer are able to permeate through it, leaving an embedded air-gap structure around the MEMS device. Size-compatibility and cleanliness of MEMS devices are important attributes of the polymer-based air-gap MEMS packaging approach. This study provides a framework for size-compatible and clean air-gap formation by selecting the type of PPC, optimizing thermal treatment steps, identifying air-gap formation options, assessing air-gap formation performance, and analyzing the chemical composition of the residue. The air-gap formation processes using photosensitive PPC films had at least twice the residue compared to processes using nonphotosensitive PPC films. The major contribution to the residue in photosensitive PPC films was from the photoacid generator (PAG), which was used to catalyze the thermal decomposition of the PPC. BCB is compatible with PPC, and provides mechanical stability during creation of the air-gaps. The polymer-based air-gaps provide a monolithic, low-cost, integrated circuit compatible MEMS packaging option.

References

References
1.
Yole Développement,
2012
, “
MEMS Packaging Market and Technology Trends Report
,” i-Micronews, available at: http://www.i-micronews.com/mems-sensors-news/2240-the-mems-packaging-assembly-test-calibration-market-will-reach-2-3b-value-by-2016-forecasts-yole-developpement.html
2.
Gaitan
,
M.
,
2012
, “
MEMS Technology Roadmapping
,” Nano-Tec Workshop 3, Lausanne, Switzerland, May 30–31, pp. 1–26.,
3.
Liu
,
P. S.
,
Wang
,
J. L.
,
Tong
,
L. Y.
, and
Tao
,
Y. J.
,
2014
, “
Advances in the Fabrication Processes and Applications of Wafer Level Packaging
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024002
.
4.
Esashi
,
M.
,
2008
, “
Wafer Level Packaging of MEMS
,”
J. Micromech. Microeng.
,
18
(
7
), p.
073001
.
5.
Kim
,
J.
,
Cheng
,
Y.-T.
,
Chiao
,
M.
, and
Lin
,
L.
,
2007
, “
Packaging and Reliability Issues in Micro-/Nanosystems
,”
Springer Handbook of Nanotechnology
,
Springer-Verlag
,
Berlin
, pp.
1835
1863
.
6.
Monajemi
,
P.
,
Joseph
,
P. J.
,
Kohl
,
P. A.
, and
Ayazi
,
F.
,
2006
, “
Wafer-Level MEMS Packaging Via Thermally Released Metal-Organic Membranes
,”
J. Micromech. Microeng.
,
16
(
4
), pp.
742
750
.
7.
Saha
,
R.
,
Fritz
,
N.
,
Bidstrup-Allen
,
S. A.
, and
Kohl
,
P. A.
,
2013
, “
Packaging-Compatible Wafer Level Capping of MEMS Devices
,”
Microelectron. Eng.
,
104
, pp.
75
84
.
8.
Joseph
,
P. J.
,
Monajemi
,
P.
,
Ayazi
,
F.
, and
Kohl
,
P. A.
,
2007
, “
Wafer-Level Packaging of Micromechanical Resonators
,”
IEEE Trans. Adv. Packag.
,
30
(
1
), pp.
19
26
.
9.
Jayachandran
,
J. P.
,
Reed
,
H. A.
,
Zhen
,
H. S.
,
Rhodes
,
L. F.
,
Henderson
,
C. L.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2003
, “
Air-Channel Fabrication for Microelectromechanical Systems Via Sacrificial Photosensitive Polycarbonates
,”
J. Microelectromech. Syst.
,
12
(
2
), pp.
147
159
.
10.
Kelleher
,
H. A.
,
2004
, “
Air-Gaps Via Thermally Decomposable Polymers and Their Application to Compliant Wafer Level Packaging (CWLP)
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
11.
Tilmans
,
H. A. C.
,
2012
, “Zero- and First-Level Packaging of RF-MEMS (MEMSPACK),” CORDIS, European Commission, Brussels, http://cordis.europa.eu/docs/projects/cnect/2/223882/080/reports/001-finalreportMEMSPACKfinalsubmitted22May20122.pdf
12.
Uzunlar
,
E.
, and
Kohl
,
P. A.
,
2014
, “
Low-Cost MEMS Packaging Using Polymer-Based Air-Gaps
,”
ECS Trans.
,
61
(
3
), pp.
237
242
.
13.
Cupta
,
M.
,
Joseph
,
P.
, and
Kohl
,
P.
,
2007
, “
Photoacid Generators for Catalytic Decomposition of Polycarbonate
,”
J. Appl. Polym. Sci.
,
105
(
5
), pp.
2655
2662
.
14.
Cupta
,
M. G.
,
2006
, “
Photoacid Generators for Catalytic Decomposition of Polycarbonate
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
15.
Gao
,
L. J.
,
Xiao
,
M.
,
Wang
,
S. J.
,
Du
,
F. G.
, and
Meng
,
Y. Z.
,
2007
, “
Copolymerization of Carbon Dioxide and Propylene Oxide With Zinc Glutarate as Catalyst in the Presence of Compounds Containing Active Hydrogen
,”
J. Appl. Polym. Sci.
,
104
(
1
), pp.
15
20
.
16.
Chen
,
Y.-C.
, and
Kohl
,
P. A.
,
2011
, “
Photosensitive Sacrificial Polymer With Low Residue
,”
Microelectron. Eng.
,
88
(
10
), pp.
3087
3093
.
17.
Spencer
,
T. J.
, and
Kohl
,
P. A.
,
2011
, “
Decomposition of Poly(Propylene Carbonate) With UV Sensitive Iodonium Salts
,”
Polym. Degrad. Stab.
,
96
(
4
), pp.
686
702
.
18.
Fulmer
,
G. R.
,
Miller
,
A. J. M.
,
Sherden
,
N. H.
,
Gottlieb
,
H. E.
,
Nudelman
,
A.
,
Stoltz
,
B. M.
,
Bercaw
,
J. E.
, and
Goldberg
,
K. I.
,
2010
, “
NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
,”
Organometallics
,
29
(
9
), pp.
2176
2179
.
19.
So
,
Y.-H.
,
Garrou
,
P.
,
Im
,
J.-H.
, and
Scheck
,
D. M.
,
2001
, “
Benzocyclobutene-Based Polymers for Microelectronics
,”
Chem. Innovation
,
31
(
12
), pp.
40
47
.
20.
So
,
Y.-H.
,
Foster
,
P.
,
Im
,
J.-H.
,
Garrou
,
P.
,
Hetzner
,
J.
,
Stark
,
E.
, and
Baranek
,
K.
,
2006
, “
Divinylsiloxane-Bisbenzocyclobutene-Based Polymer Modified With Polystyrene–Polybutadiene–Polystyrene Triblock Copolymers
,”
J. Polym. Sci., Part A: Polym. Chem.
,
44
(
5
), pp.
1591
1599
.
21.
Dow,
2012
, “Processing Procedures for CYCLOTENE 4000 Series Resins—DS3000 Immersion Develop Process,” Dow Chemical Co., Midland, MI, http://www.dow.com/scripts/litorder.asp?filepath=/888-00008.pdf
22.
Dow, 1998, “Cure, Oxidation Measurements for CYCLOTENE 3000 & 4000 Series Resins,” Dow Chemical Co., Midland, MI, http://www.dow.com/scripts/litorder.asp?filepath=/618-00219.pdf
23.
Thermo Scientific, 2015, “Avantage Data System,” Thermo Fisher Scientific, Waltham, MA, http://www.thermoscientific.com/en/product/avantage-data-system.html
24.
Casa Software, 2009, “CasaXPS: Processing Software for XPS, AES, SIMS and More,” Casa Software Ltd., Wilmslow, UK, http://www.casaxps.com/
25.
Zhang
,
J.
,
Kang
,
J.
,
Hu
,
P.
, and
Meng
,
Q.
,
2007
, “
Surface Modification of Poly(Propylene Carbonate) by Oxygen Ion Implantation
,”
Appl. Surf. Sci.
,
253
(
12
), pp.
5436
5441
.
26.
Briggs
,
D.
,
1998
,
Surface Analysis of Polymers by XPS and Static SIMS
,
Cambridge University Press
,
Cambridge, UK
.
27.
Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W., and Powell, C. J., 2012, “NIST X-Ray Photoelectron Spectroscopy Database,“ National Institute of Standards and Technology (NIST), Gaithersburg, MD, http://srdata.nist.gov/xps/
28.
Beamson
,
G.
, and
Briggs
,
D.
,
1992
, “
High-Resolution Monochromated X-Ray Photoelectron-Spectroscopy of Organic Polymers—A Comparison Between Solid-State Data for Organic Polymers and Gas-Phase Data for Small Molecules
,”
Mol. Phys.
,
76
(
4
), pp.
919
936
.
29.
Spencer
,
T. J.
,
2010
, “
Air-Gap Transmission Lines on Printed Circuit Boards for Chip-to-Chip Interconnections
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
30.
Lu
,
X. B.
, and
Wang
,
Y.
,
2004
, “
Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides Under Mild Conditions
,”
Angew. Chem., Int. Ed.
,
43
(
27
), pp.
3574
3577
.
31.
AIST, 2015, “Spectral Database for Organic Compounds (SDBS),” National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
32.
Cohen
,
C. T.
,
Chu
,
T.
, and
Coates
,
G. W.
,
2005
, “
Cobalt Catalysts for the Alternating Copolymerization of Propylene Oxide and Carbon Dioxide: Combining High Activity and Selectivity
,”
J. Am. Chem. Soc.
,
127
(
31
), pp.
10869
10878
.
33.
Barreto
,
C.
,
Hansen
,
E.
, and
Fredriksen
,
S.
,
2012
, “
Novel Solventless Purification of Poly(Propylene Carbonate): Tailoring the Composition and Thermal Properties of PPC
,”
Polym. Degrad. Stab.
,
97
(
6
), pp.
893
904
.
34.
Wu
,
X. Q.
,
Reed
,
H. A.
,
Rhodes
,
L. F.
,
Elce
,
E.
,
Ravikiran
,
R.
,
Shick
,
R. A.
,
Henderson
,
C. L.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2003
, “
Photoinitiation Systems and Thermal Decomposition of Photodefinable Sacrificial Materials
,”
J. Appl. Polym. Sci.
,
88
(
5
), pp.
1186
1195
.
35.
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1992
, “
A New Bulge Test Technique for the Determination of Young's Modulus and Poisson's Ratio of Thin-Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.
You do not currently have access to this content.