Thermal interface materials (TIMs) play a critical role in conventionally packaged electronic systems and often represent the highest thermal resistance and/or least reliable element in the heat flow path from the chip to the external ambient. In defense applications, the need to accommodate large differences in the coefficients of thermal expansion (CTE) among the packaging materials, provide for in-field reworkability, and assure physical integrity as well as long-term reliability further exacerbates this situation. Epoxy-based thermoplastic TIMs are compliant and reworkable at low temperature, but their low thermal conductivities pose a significant barrier to the thermal packaging of high-power devices. Alternatively, while solder TIMs offer low thermal interface resistances, their mechanical stiffness and high melting points make them inappropriate for many of these applications. Consequently, Defense Advanced Research Projects Agency (DARPA) initiated a series of studies exploring the potential of nanomaterials and nanostructures to create TIMs with solderlike thermal resistance and thermoplasticlike compliance and reworkability. This paper describes the nano-TIM approaches taken and results obtained by four teams responding to the DARPA challenge of pursuing the development of low thermal resistance of 1 mm2 K/W and high compliance and reliability TIMs. These approaches include the use of metal nanosprings (GE), laminated solder and flexible graphite films (Teledyne), multiwalled carbon nanotubes (CNTs) with layered metallic bonding materials (Raytheon), and open-ended CNTs (Georgia Tech (GT)). Following a detailed description of the specific nano-TIM approaches taken and of the metrology developed and used to measure the very low thermal resistivities, the thermal performance achieved by these nano-TIMs, with constant thermal load, as well as under temperature cycling and in extended life testing (aging), will be presented. It has been found that the nano-TIMs developed by all four teams can provide thermal interface resistivities well below 10 mm2 K/W and that GE's copper nanospring TIMs can consistently achieve thermal interface resistances in the range of 1 mm2 K/W. This paper also introduces efforts undertaken for next generation TIMs to reach thermal interface resistance of just 0.1 mm2 K/W.

References

References
1.
Bloshchok
,
K. P.
, and
Bar-Cohen
,
A.
,
2012
, “
Advanced Thermal Management Technologies for Defense Electronics
,” Defense Transformation and Net-Centric Systems 2012,
R.
Suresh
, ed.,
Proc. SPIE
,
8405
, p.
84050I
.
2.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9
), pp.
1658
1666
.
3.
Prasher
,
R.
,
2008
, “
Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
77
(
7
), p.
075424
.
4.
Zhen
,
H.
,
Fisher
,
T.
, and
Murthy
,
J.
,
2010
, “
Simulation of Phonon Transmission Through Graphene and Graphene Nanoribbons With a Green's Function Method
,”
J. Appl. Phys.
,
108
(
9
), p.
094319
.
5.
Zhen
,
H.
,
Fisher
,
T.
, and
Murthy
,
J.
,
2011
, “
An Atomistic Study of Thermal Conductance Across a Metal–Graphene Nanoribbon Interface
,”
J. Appl. Phys.
,
109
(
7
), p.
074305
.
6.
Zhen
,
H.
,
Fisher
,
T.
, and
Murthy
,
J.
,
2010
, “
Simulation of Thermal Conductance Across Dimensionally Mismatched Graphene Interfaces
,”
J. Appl. Phys.
,
108
(
11
), p.
114310
.
7.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
.
8.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2011
, “
Mechanism of Thermal Conductivity Reduction in Few-Layer Graphene
,”
J. Appl. Phys.
,
110
(
4
), p.
044317
.
9.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2011
, “
Spectral Phonon Conduction and Dominant Scattering Pathways in Graphene
,”
J. Appl. Phys.
,
110
(
9
), p.
094312
.
10.
Guo
,
L.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
, and
Xu
,
X.
,
2012
, “
Heat Transfer Across Metal–Dielectric Interfaces During Ultrafast-Laser Heating
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042402
.
11.
Nguyen
,
J. J.
,
Bougher
,
T. L.
,
Pour Shahid Saeed Abadi
,
P.
,
Sharma
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2013
, “
Postgrowth Microwave Treatment to Align Carbon Nanotubes
,”
ASME J. Micro Nano-Manuf.
,
1
(
1
), p.
014501
.
12.
Yao
,
Y.
,
Moon
,
K.-S.
,
McNamara
,
A.
, and
Wong
,
C.-P.
,
2013
, “
Water Vapor Treatment for Decreasing the Adhesion Between Vertically Aligned Carbon Nanotubes and the Growth Substrate
,”
Chem. Vap. Deposition
,
19
(
7–9
), pp.
224
227
.
13.
Ginga
,
N. J.
, and
Sitaraman
,
S. K.
,
2013
, “
The Experimental Measurement of Effective Compressive Modulus of Carbon Nanotube Forests and the Nature of Deformation
,”
Carbon
,
53
, pp.
237
244
.
14.
Cao
,
A.
, and
Qu
,
J.
,
2012
, “
Kapitza Conductance of Symmetric Tilt Grain Boundaries in Graphene
,”
J. Appl. Phys.
,
111
(
5
), p.
053529
.
15.
Pour Shahid Saeed Abadi
,
P.
,
Hutchens
,
S. B.
,
Greer
,
J. R.
,
Cola
,
B. A.
, and
Graham
,
S.
,
2013
, “
Buckling-Driven Delamination of Carbon Nanotube Forests
,”
Appl. Phys. Lett.
,
102
(
22
), p.
223103
.
16.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Dai
,
H.
,
Petit
,
P.
,
Robert
,
J.
,
Xu
,
C.
,
Lee
,
Y. H.
,
Kim
,
S. G.
, and
Rinzler
,
A. G.
,
1996
, “
Crystalline Ropes of Metallic Carbon Nanotubes
,”
Science
,
273
(
5274
), pp.
483
487
.
17.
Cao
,
A.
, and
Qu
,
J.
,
2012
, “
Size Dependent Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
112
(
1
), p.
013503
.
18.
Gao
,
F.
,
Qu
,
J.
, and
Yao
,
M.
,
2011
, “
Interfacial Thermal Resistance Between Metallic Carbon Nanotube and Cu Substrate
,”
J. Appl. Phys.
,
110
(
12
), p.
124314
.
19.
Ginga
,
N. J.
,
Chen
,
W.
, and
Sitaraman
,
S. K.
,
2014
, “
Waviness Reduces Effective Modulus of Carbon Nanotube Forests by Several Orders of Magnitude
,”
Carbon
,
66
, pp.
57
66
.
20.
Yao
,
Y.
,
Li
,
Z.
, and
Wong
,
C.-P.
,
2013
, “
Quality Control of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
11
), pp.
1804
1810
.
21.
Shaddock
,
D.
,
Weaver
,
S.
,
Chasiotis
,
I.
,
Shah
,
B.
, and
Zhong
,
D.
,
2011
, “
Development of a Compliant Nanothermal Interface Material
,”
ASME
Paper No. IPACK2011-52015.
22.
Avram
,
B.-C.
,
Kaiser
,
M.
,
Nicholas
,
J.
, and
Sharar
,
D.
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.
23.
General Electric
,
2013
, “
Article Including Thermal Interface Element and Method of Preparation
,” U.S. Patent No. 8405996 B2.
24.
Zhao
,
Y.
,
Strauss
,
D.
,
Liao
,
T.
,
Chen
,
Y. C.
, and
Chen
,
C. L.
,
2011
, “
Development of a High Performance Thermal Interface Material With Vertically Aligned Graphite Platelets
,”
ASME
Paper No. AJTEC2011-44169.
25.
Collins
,
K. C.
,
Chen
,
S.
, and
Chen
,
G.
,
2010
, “
Effects of Surface Chemistry on Thermal Conductance at Aluminum–Diamond Interfaces
,”
Appl. Phys. Lett.
,
97
(
8
), p.
083102
.
26.
Chen
,
H.-H.
,
Zhao
,
Y.
, and
Chen
,
C.-L.
,
2013
, “
Experimental Study of Coefficient of Thermal Expansion of Alleged Graphite Thermal Interface Materials
,”
Front. Heat Mass Transfer
,
4
, p.
013004
.
27.
Li
,
P.
,
Shi
,
J.
,
Ng
,
L.
, and
Shen
,
S.
, “
All-Metal Nanostructured Thermal Interface Materials With High Thermal Conductivity and High Mechanical Compliance
,” (in preparation).
28.
DeVoto
,
D.
,
Paret
,
P.
,
Mihalic
,
M.
,
Narumanchi
,
S.
,
Bar-Cohen
,
A.
, and
Matin
,
K.
,
2014
, “
Thermal Performance and Reliability Characterization of Bonded Interface Materials
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Orlando, FL
, May 27–30, pp.
409
417
.
29.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
30.
Akbulut
,
M.
,
Yegin
,
C.
, and
Nagabandi
,
N.
, “
Ultra High-Performance TIMs Nanofabricated Via Electrocodeposition of Functionalized Boron Nitride Nanosheets and Metal Matrix
,” U.S. Patent (in preparation).
31.
Yegin
,
C.
,
Nagabandi
,
N.
, and
Akbulut
,
M.
, “
Functionalized Nanosheet–Metal Nanocomposite TIMs With Superior Thermal and Mechanical Properties
,”
Adv. Mater.
(in press).
32.
Nagabandi
,
N.
,
Yegin
,
C.
, and
Akbulut
,
M.
, “
Effect of Surface Chemistry on Thermal and Mechanical Properties of Nanosheet/Metal Nanocomposite TIMS
,”
Chem. Mater.
(in press).
33.
Chen
,
I. C.
, and
Akbulut
,
M.
, “
Adsorption Kinetics and Thermodynamics of Graphene Oxide on Cationic Self-Assembled Monolayers
,”
Langmuir
(in press).
34.
Shen
,
S.
,
2014
, “
Metal Nanowire Thermal Interface Materials
,” Invention Disclosure, Patent No. 15-136.
35.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R. T.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibers With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
, pp.
251
255
.
36.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polariton Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.
37.
Shen
,
S.
,
Narayanaswamy
,
A.
,
Goh
,
S.
, and
Chen
,
G.
,
2008
, “
Thermal Conductance of Bimaterial Microcantilevers
,”
Appl. Phys. Lett.
,
92
(
6
), p.
063509
.
You do not currently have access to this content.