Data centers are mission critical facilities that typically contain thousands of data processing equipment, such as servers, switches, and routers. In recent years, there has been a boom in data center usage, leading their energy consumption to grow by about 10% a year continuously. The heat generated in these data centers must be removed so as to prevent high temperatures from degrading their reliability, which would cost additional energy. Therefore, precise and reliable thermal management of the data center environment is critical. This paper focuses on recent advancements in data center modeling and energy optimization. A number of currently available and developmental thermal management technology in data centers are broadly reviewed. Computational fluid dynamics (CFD) for raised-floor data centers, experimental measurements, containment systems, economizer cooling, hybrid cooling, and device level cooling are all thoroughly reviewed. The paper concludes with a summary and presents areas of potential future research, which are based on the holistic integration of workload prediction and allocation, and thermal management using smart control systems.

References

References
1.
U.S. Environmental Protection Agency (EPA)
,
2007
, “
Report to Congress on Server and Data Center Energy Efficiency, Public Law 109-43
,” U.S. Environmental Protection Agency, Washington, DC.
2.
Columbus, L.
,
2012
, “
Predicting Enterprise Cloud Computing Growth
,” Forbes, accessed January 31, 2014, http://www.forbes.com/sites/louiscolumbus/2013/09/04/predicting-enterprise-cloud-computing-growth/
3.
Koomey
,
J.
,
2011
,
Growth in Data Center Electricity Use 2005 to 2010
,
Analytics Press
,
Oakland, CA
.
4.
Venkatraman
,
A.
,
2013
, “
Global Census Shows Datacenter Power Demand Grew 63% in 2012
,”
DatacenterDynamics (DCD) Intelligence
, London.
5.
Abramovitz, B.,
2013
, “
Industry Research Monitor Data Centers
,”
General Electric Capital, Norwalk, CT
.
6.
McNevin, A.,
2014
, “
15% Growth Forecast for North America Colocation Market 2014
,”
DatacenterDynamics
, London.
7.
Stansberry
,
M.
, and
Kudritzki
,
J.
,
2013
, “
Uptime Institute 2012 Data Center Industry Survey
,” Uptime Institute, New York.
8.
Wikipedia, 2014, “Mission Critical,” accessed January 31, 2014, http://en.wikipedia.org/wiki/Mission_critical
9.
“Mission Critical Facilities Management Principals of Design, Operations, and Maintenance,” 2012, Last accessed January 31,
2014
, http://www.construction.org/clientuploads/resource_center/facilities_management/MissionCriticalFacilities.pdf
10.
Ponemon Institute,
2010
, “
National Survey on Data Center Outages
,”
Ponemon Institute
, Traverse City, MI.
11.
Zuo
,
Z. J.
,
Hoover
,
L. R.
, and
Phillips
,
A. L.
,
2002
,
An Integrated Thermal Architecture for Thermal Management of High Power Electronics
,
Millpress
,
Rotterdam, The Netherlands
.
12.
Salim
,
M.
, and
Tozer
,
R.
,
2010
, “
Data Centers' Energy Auditing and Benchmarking: Progress Update
,”
ASHRAE Trans.
,
116
(
1
), pp.
109
117
.
13.
Patankar
,
S.
, and
Karki
,
K.
,
2004
, “
Distribution of Cooling Airflow in a Raised-Floor Data Center
,”
ASHRAE Trans.
,
110
(
2
), pp.
629
634
.
14.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2002
, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
AIAA
Paper No. 2002-3091.
15.
Muralidharan
,
B.
,
Shrivastava
,
S.
,
Ibrahim
,
M.
,
Alkharabsheh
,
S. A.
, and
Sammakia
,
B. G.
,
2013
, “
Impact of Cold Aisle Containment on Thermal Performance of Data Center
,”
ASME
Paper No. IPACK2013-73201.
16.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
,
Springer
, New York.
17.
Rambo
,
J.
, and
Joshi
,
Y.
,
2007
, “
Modeling of Data Center Airflow and Heat Transfer: Stat of the Art and Future Trends
,”
Distrib. Parallel Databases
,
21
(
2–3
), pp.
193
225
.
18.
Rambo
,
J.
, and
Joshi
,
Y.
,
2006
, “
Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management
,” Ph.D. disseration, Georgia Institute of Technology, Atlanta, GA.
19.
Rambo
,
J.
, and
Joshi
,
Y.
,
2005
, “
Reduced Order Modeling of Steady Turbulent Flows
,”
ASME
Paper No. HT2005-72143.
20.
Somani
,
A.
, and
Joshi
,
Y.
,
2009
, “
Data Center Cooling Optimization: Ambient Intelligence Based Load Management (AILM)
,”
ASME
Paper No. HT2009-88228.
21.
Samadiani
,
E.
,
2009
, “
Energy Efficient Thermal Management of Data Centers Via Open Multi-Scale Design
,” Ph.D. disseration, Georgia Institute of Technology, Atlanta, GA.
22.
Ghosh
,
R.
, and
Joshi
,
Y.
,
2013
, “
Error Estimation in POD-Based Dynamic Reduced-Order Thermal Modeling of Data Centers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
698
707
.
23.
Belady
,
C.
,
Kelkar
,
K.
, and
Patankar
,
S.
,
1999
, “
Improving Productivity of Electronic Packaging With Flow Network Modeling (FNM)
,”
Electron. Cool.
,
5
(
1
), pp.
36
40
.
24.
Radmehr
,
A.
,
Kelkar
,
K.
,
Kelly
,
P.
,
Patankar
,
S.
, and
Kang
,
S.
,
1999
, “
Analysis of the Effect of Bypass on Performance of Heat Sinks Using Flow Network Modeling (FNM)
,”
15th Annual IEEE Semiconductor Thermal Measurement and Management Systems
(
SEMI-THERM
), San Diego, CA, Mar. 9–11, pp. 42–47.
25.
Steinbrecher
,
R.
,
Radmehr
,
A.
,
Kelkar
,
K.
, and
Patankar
,
S.
, “
Use of Flow Network Modeling (FNM) for the Design of Air-Cooled Servers
,” Innovative Research Inc., Minneapolis, MN, http://inres.com/assets/files/macroflow/MF08-Air-Cooled-Server.pdf
26.
Innovative Research, 2003, MacroFlow,
Innovative Research
,
Plymouth, MN
.
27.
Kelkar
,
K.
, and
Patankar
,
S.
, “
Analysis and Design of Liquid-Cooling Systems Using Flow Network Modeling (FNM)
,”
ASME
Paper No. IPACK2003-35233.
28.
Cross
,
H.
,
1936
, “
Analysis of Flow in Networks of Conduits or Conductors
,” University of Illinois Bulletin, University of Illinois at Urbana-Champaign, Urbana, IL, Report No. 286.
29.
Fernandes
,
J.
,
Ghalambor
,
S.
,
Docca
,
A.
,
Aldham
,
C.
,
Agonafer
,
D.
,
Chenelly
,
E.
,
Chan
,
B.
, and
Ellsworth
,
M.
,
2013
, “
Combining Computational Fluid Dynamics (CFD) and Flow Network Modeling (FNM) for Design of a Multi-Chip Module (MCM) Cold Plate
,”
ASME
Paper No. IPACK2013-73294.
30.
Radmehr
,
A.
, and
Patankar
,
S.
,
2004
, “
A Flow Network Analysis of a Liquid Cooling System That Incorporates Microchannel Heat Sinks
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '04
), Las Vegas, NV, June 1–4, pp.
714
721
.
31.
Ellsworth
,
M.
,
2014
, “
Flow Network Analysis of the IBM Power 775 Supercomputer Water Cooling System
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Orlando, FL, May 27–30, pp.
715
722
.
32.
Patel
,
C. D.
,
Bash
,
C. E.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D.
,
2001
, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,”
Pacific Rim Technical Conference and Exposition of Packaging and Integration of Electronic and Photonic Systems (IPACK)
, Kauai, HI, July 8–13, ASME Paper No. IPACK2001-15622.
33.
Schmidt
,
R. R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patnkar
,
S. V.
,
2001
, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Centers
,”
Pacific Rim Technical Conference and Exposition of Packaging and Integration of Electronic and Photonic Systems (IPACK)
, Kauai, HI, July 8–13, ASME Paper No. IPACK2001-15728.
34.
Kang
,
S.
,
Schmidt
,
R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
,
2001
, “
A Methodology for the Design of Perforated Tiles in Raised Floor Data Centers Using Computational Flow Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
177
183
.
35.
Karki
,
K.
,
Patankar
,
S.
, and
Radmehr
,
A.
,
2003
, “
Techniques for Controlling Airflow Distribution in Raised-Floor Data Centers
,”
ASME
Paper No. IPACK2003-35282.
36.
VanGilder
,
J.
, and
Schmidt
,
R.
,
2005
, “
Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center
,”
ASME
Paper No. IPACK2005-73375.
37.
Radmehr
,
A.
,
Schmidt
,
R.
,
Karki
,
K.
, and
Patankar
,
S.
,
2005
, “
Distributed Leakage Flow in Raised-Floor Data Centers
,”
ASME
Paper No. IPACK2005-73273.
38.
Abdelmaksoud
,
W. A.
,
Khalifa
,
H. E.
,
Dang
,
T. Q.
,
Elhadidi
,
B.
,
Schmidt
,
R. R.
, and
Iyengar
,
M.
,
2010
, “
Experimental and Computational Study of Perforated Floor Tile in Data Centers
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), Las Vegas, NV, June 2–5.
39.
Arghode
,
V. K.
,
Kumar
,
P.
,
Joshi
,
Y.
,
Weiss
,
T.
, and
Meyer
,
G.
,
2013
, “
Rack Level Modeling of Air Flow Through Perforated Tile in a Data Center
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030902
.
40.
Arghode
,
V.
, and
Joshi
,
Y.
,
2013
, “
Modeling Strategies for Air Flow Through Perforated Tiles in a Data Center
,”
IEEE Trans. Compon. Packag. Technol.
,
3
(
5
), pp.
800
810
.
41.
Abdelmaksoud
,
W.
,
Dang
,
T.
,
Khalifa
,
H. E.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2012
, “
Perforated Tile Models for Improving Data Center CFD Simulation
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
60
67
.
42.
Shrivastava
,
S. K.
,
Iyengar
,
M.
,
Sammakia
,
B. G.
,
Schmidt
,
R.
, and
Vangilder
,
J. W.
,
2006
, “
Experimental-Numerical Comparison for a High-Density Data Center: Hot Spot Fluxes in Excess of 500 W/ft2
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp. 402–411.
43.
Tan
,
S. P.
,
Toh
,
K. C.
, and
Wong
,
Y. W.
,
2007
, “
Server-Rack Air Flow and Heat Transfer Interactions in Data Centers
,”
ASME
Paper No. IPACK2007-33672.
44.
Zhang
,
X. S.
,
VanGilder
,
J. W.
,
Iyengar
,
M.
, and
Schmidt
,
R. R.
,
2008
, “
Effect of Rack Modeling Detail on the Numerical Results of a Data Center Test Cell
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM 2008
), Lake Buena Vista, FL, May 28–31, pp. 1183–1190.
45.
Zhai
,
J. Z.
,
Hermansen
,
K. A.
, and
Al-Saadi
,
S.
,
2012
, “
The Development of Simplified Rack Boundary Conditions for Numerical Data Center Models
,”
ASHRAE Trans.
,
118
(
2
), pp. 436–449.
46.
North
,
T.
,
2011
, “
Understanding How Cabinet Door Perforation Impacts Airflow
,”
BICSI News
, Sept./Oct., pp. 36–42.
47.
Schmidt
,
R.
,
Chu
,
R.
,
Ellsworth
,
M.
,
Iyengar
,
M.
,
Porter
,
D.
,
Kamath
,
V.
, and
Lehman
,
B.
,
2005
, “
Maintaining Datacom Rack Inlet Air Temperatures With Water Cooled Heat Exchanger
,”
ASME
Paper No. IPACK2005-73468.
48.
Coxe
,
K.
,
2009
, “
Rack Infrastructure Effects on Thermal Performance of a Server
,” Dell Enterprise Thermal Engineering, White Paper.
49.
Rubenstein
,
B.
,
2008
, “
Cable Management Arm Airflow Impedance Study
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM 2008
), Orlando, FL, May 28–31, pp. 577–582.
50.
Alkharabsheh
,
S. A.
,
Sammakia
,
B. G.
, and
Murray
,
B. T.
,
2014
, “
Experimental Characterization of Pressure Drop in a Server Rack
,”
IEEE Inter Society Conference on Thermal Phenomena
(
ITHERM
), Orlando, FL, May 27–30, pp. 547–556.
51.
Radmehr
,
A.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
,
2007
, “
Analysis of Airflow Distribution Across a Front-to-Rear Server Rack
,”
ASME
Paper No. IPACK2007-33574.
52.
Ghosh
,
R.
,
Sundaralingam
,
V.
, and
Joshi
,
Y.
,
2012
, “
Effect of Rack Server Population on Temperatures in Data Centers
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 30–37.
53.
Almoli
,
A.
,
Thompson
,
A.
,
Kapur
,
N.
,
Summers
,
J.
,
Thompson
,
H.
, and
Hannah
,
G.
,
2012
, “
Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres
,”
Appl. Energy
,
89
(
1
), pp.
150
155
.
54.
Samadiani
,
E.
,
Rambo
,
J.
, and
Joshi
,
Y.
,
2010
, “
Numerical Modeling of Perforated Tile Flow Distribution in a Raised-Floor Data Center
,”
ASME J. Electron. Packag.
,
132
(
2
), p.
021002
.
55.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Transfer
,
132
(
7
), p.
073001
.
56.
Ibrahim
,
M.
,
Bhopte
,
S.
,
Sammakia
,
S.
,
Murray
,
B.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2010
Effect of Thermal Characteristics of Electronic Enclosures on Dynamic Data Center Performance
,”
ASME
Paper No. IMECE2010-40914.
57.
Alkharabsheh
,
S.
,
Sammakia
,
B.
,
Shrivastava
,
S.
, and
Schmidt
,
R.
,
2014
, “
Dynamic Models for Server Rack and CRAH in a Room Level CFD Model of a Data Center
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), Orlando, FL, May 27–30, pp. 1338–1345.
58.
Schmidt
,
R.
,
2001
, “
Effect of Data Center Characteristics on Data Processing Equipment Inlet Temperatures
,”
ASME
Paper No. IPACK2001-15870.
59.
Schmidt
,
R.
, and
Cruz
,
E.
,
2002
, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures of Chilled Air Exiting Both the Hot and Cold Aisles
,”
IEEE Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2002
), San Diego, CA, June 1, pp. 580–594.
60.
Schmidt
,
R.
, and
Cruz
,
E.
,
2002
, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures When High Powered Racks are Situated Amongst Lower Powered Racks
,”
ASME
Paper No. IMECE2002-39652.
61.
Schmidt
,
R.
, and
Cruz
,
E.
,
2003
, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures When Adjacent Racks are Removed
,”
ASME
Paper No. IPACK2003-35240.
62.
Schmidt
,
R.
, and
Cruz
,
E.
,
2003
, “
Raised Floor Computer Data Center: Effect of Rack Inlet Temperatures When Rack Flowrates are Reduced
,”
ASME
Paper No. IPACK2003-35241.
63.
Patel
,
C. D.
,
Sharma
,
R.
,
Bash
,
C. E.
, and
Beitelmal
,
A.
,
2002
, “
Thermal Considerations in Cooling Large Scale High Compute Density Data Centers
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2002
), San Diego, CA, San Diego, CA, June 1, pp. 767–776.
64.
Schmidt
,
R.
, and
Cruz
,
E.
,
2004
, “
Cluster of High-Powered Racks Within a Raised-Floor Computer Data Center: Effect of Perforated Tile Flow Distribution on Rack Inlet Air Temperatures
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
510
519
.
65.
Schmidt
,
R.
,
Cruz
,
E.
, and
Iyengar
,
M.
,
2005
, “
Challenges of Data Center Thermal Management
,”
IBM J. Res. Dev.
,
49
(
4.5
), pp.
709
723
.
66.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
,
2006
, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,”
ASME J. Electron. Packag.
128
(
4
), pp.
380
387
.
67.
Bhopte
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
,
Iyenger
,
M.
, and
Agonafer
,
D.
,
2006
, “
Effect of Under Floor Blockages on Data Center Performance
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp. 426–433.
68.
Hannaford
,
P.
,
2006
, “
Ten Cooling Solutions to Support High-Density Server Deployment
,” White Paper, American Power Conversion, West Kingston, RI, Report No. WP-42 v5.
69.
Greenberg
,
S.
,
Mills
,
E.
,
Tschudi
,
B.
,
Rumsey
,
P.
, and
Myatt
,
B.
,
2006
, “
Best Practices for Data Centers: Lessons Learned From Benchmarking 22 Data Centers
,” ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, Aug. 13–18, pp. 76–87.
70.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2007
, “
Best Practices for Data Center Thermal and Energy Management: Review of Literature
,”
ASHRAE Trans.
,
113
(
1
), pp. 206–218.
71.
Nagarathinam
,
S.
,
Fakhim
,
B.
,
Behnia
,
M.
, and
Armfield
,
S.
,
2013
, “
A Comparison of Parametric and Multivariable Optimization Techniques in a Raised-Floor Data Center
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030905
.
72.
Sorell
,
V.
,
Escalante
,
S.
, and
Yang
,
J.
,
2005
, “
Comparison of Overhead and Underfloor Air Delivery Systems in a Data Center Environment Using CFD Modeling
,”
ASHRAE Trans.
,
111
(
2
), pp. 756–764.
73.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
,
2005
, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
ASME
Paper No. IPACK2005-73387.
74.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2011
, “
Evaluation of a Data Center Recirculation Non-Uniformity Metric Using Computational Fluid Dynamics
,”
ASME
Paper No. IPACK2011-52005.
75.
Alkharabsheh
,
S.
,
Sammakia
,
B.
,
Shrivastava
,
S.
, and
Schmidt
,
R.
,
2013
, “
Utilizing Practical Fan Curves in CFD Modeling of a Data Center
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 17–21, pp. 211–215.
76.
Alkharabsheh
,
S.
,
Sammakia
,
B.
,
Shrivastava
,
S.
,
Ellsworth
,
M.
,
David
,
M.
, and
Schmidt
,
R.
,
2013
, “
Numerical Steady State and Dynamic Study Using Calibrated Fan Curves for CRAC Units and Servers
,”
ASME
Paper No. IPACK2013-73217.
77.
Alkharabsheh
,
S.
,
Sammakia
,
B.
,
Shrivastava
,
S.
, and
Schmidt
,
R.
,
2013
, “
A Numerical Study for Contained Cold Aisle Data Center Using CRAC and Server Calibrated Fan Curves
,”
ASME
Paper No. IMECE2013-65145.
78.
Alkharabsheh
,
S.
,
Sammakia
,
B.
, and
Shrivastava
,
S.
,
2015
, “
Experimentally Validated CFD Model for a Data Center With Cold Aisle Containment
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021010
.
79.
Bash
,
C. E.
,
Patel
,
C. D.
, and
Sharma
,
R. K.
,
2006
, “
Dynamic Thermal Management of Air Cooled Data Centers
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp. 445–452.
80.
Kummert
,
M.
,
Dempster
,
W. M.
, and
McLean
,
K.
,
2009
, “
Transient Thermal Analysis of a Data Centre Cooling System Under Fault Conditions
,”
11th International Building Performance Simulation Association Conference and Exhibition
, Glasgow, UK, July 27–30.
81.
Gondipalli
,
S.
,
Ibrahim
,
M.
,
Bhopte
,
S.
,
Sammakia
,
B.
,
Murray
,
B.
,
Ghose
,
K.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2010
, “
Numerical Modeling of Data Center With Transient Boundary Conditions
,” 12th IEEE Thermal and Thermomechanical Phenomena in Electronic Systems (
ITHERM
), Las Vegas, NV, June 2–5.
82.
Beitelmal
,
A. H.
, and
Patel
,
C. D.
,
2007
, “
Thermo-Fluids Provisioning of a High Performance High Density Data Center
,”
Distrib. Parallel Databases
,
21
(
2–3
), pp.
227
238
.
83.
Sharma
,
R. K.
,
Bash
,
C. E.
,
Patel
,
C. D.
,
Friedrich
,
R. J.
, and
Chase
,
J. S.
,
2005
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
Internet Comput.
,
9
(
1
), pp.
42
49
.
84.
Patel
,
C.
,
Bash
,
C.
,
Sharma
,
R.
,
Beitelmal
,
M.
, and
Friedrich
,
R.
,
2003
, “
Smart Cooling of Data Centers
,”
ASME
Paper No. IPACK2003-35059.
85.
Khankari
,
K.
,
2010
, “
Thermal Mass Availability for Cooling Data Centers During Power Shutdown
,”
ASHRAE Trans.
,
116
(
Pt. 2
), pp. 205–217.
86.
Khankari
,
K.
,
2011
, “
Rate of Heating Analysis of Data Centers During Power Shutdown
,”
ASHRAE Trans.
,
117
(
Pt. 1
), pp. 212–221.
87.
Sundaralingam
,
V.
,
Isaacs
,
S.
,
Kumar
,
P.
, and
Joshi
,
Y.
,
2011
, “
Modeling Thermal Mass of a Data Center Validated With Actual Data Due to Chiller Failure
,”
ASME
Paper No. IMECE2011-65573.
88.
Ibrahim
,
M.
,
Shrivastava
,
S.
,
Sammakia
,
B.
, and
Ghose
,
K.
,
2012
, “
Thermal Mass Characterization for a Server at Different Fan Speeds
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 457–465.
89.
Erden
,
H. S.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2013
, “
Transient Thermal Response of Servers Through Air Temperature Measurements
,”
ASME
Paper No. IPACK2013-73281.
90.
Erden
,
H. S.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2014
, “
Determination of the Lumped-Capacitance Parameters of Air-Cooled Servers Through Air Temperature Measurements
,”
ASME J. Electron. Packag.
,
136
(
3
), p.
031005
.
91.
Alkharabsheh
,
S.
,
Sammakia
,
B.
,
Shrivastava
,
S.
, and
Schmidt
,
R.
,
2014
Implementing Rack Thermal Capacity in a Room Level CFD Model of a Data Center
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 9–13, pp. 188–192.
92.
Shrivastava
,
S.
, and
Ibrahim
,
M.
,
2013
, “
Benefit of Cold Aisle Containment During Cooling Failure
,”
ASME
Paper No. IPACK2013-73219.
93.
Schmidt
,
R.
,
2004
, “
Thermal Profile of a High-Density Data Center: Methodology to Thermally Characterize a Data Center
,”
ASHRAE Trans.
,
110
(
2
), pp. 635–642.
94.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2005
, “
Effect of Data Center Layout on Rack Inlet Air Temperatures
,”
ASME
Paper No. IPACK2005-73385.
95.
Karlsson
,
J. F.
, and
Moshfegh
,
B.
,
2005
, “
Investigation of Indoor Climate and Power Usage in a Data Center
,”
Energy Build.
,
37
(
10
), pp.
1075
1083
.
96.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
,
2005
, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
137
144
.
97.
Beitelmal
,
M. H.
,
Wang
,
Z.
,
Felix
,
C.
,
Bash
,
C.
,
Hoover
,
C.
, and
McReynolds
,
A.
,
2009
, “
Local Cooling Control of Data Centers With Adaptive Vent Tiles
,”
ASME
Paper No. InterPACK2009-89035.
98.
Chen
,
K.
,
Auslander
,
D. M.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2006
, “
Local Temperature Control in Data Center Cooling: Part I, Correlation Matrix
,” HP Enterprise Software and Systems Laboratory, Report No. HPL-2006-42.
99.
Chen
,
K.
,
Bash
,
C. E.
,
Auslander
,
D. M.
, and
Patel
,
C. D.
,
2006
, “
Local Temperature Control in Data Center Cooling: Part II, Statistical Analysis
,” HP Enterprise Software and Systems Laboratory, Report No. HPL-2006-43.
100.
Abdelmaksoud
,
W. A.
,
Dang
,
T. Q.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2013
, “
Improved Computational Fluid Dynamics Model for Open-Aisle Air-Cooled Data Center Simulations
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030901
.
101.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2015
, “
Experimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011011
.
102.
Bhopte
,
S.
,
Sammakia
,
B.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2007
, “
Experimental Investigation of the Impact of Under Floor Blockages on Flow Distribution in a Data Center Cell
,”
ASME
Paper No. IPACK2007-33540.
103.
Vangilder
,
J. W.
,
Pardey
,
Z. M.
,
Zhang
,
X.
, and
Healey
,
C.
,
2013
, “
Experimental Measurement of Server Thermal Effectiveness for Compact Transient Data Center Model
,”
ASME
Paper No. IPACK2013-73155.
104.
Iyengar
,
M.
,
Schmidt
,
R.
,
Hamann
,
H.
, and
Vangilder
,
J.
,
2007
, “
Comparison Between Numerical and Experimental Temperature Distributions in a Small Data Center Test Cell
,”
ASME
Paper No. IPACK2007-33508.
105.
Fakhim
,
B.
,
Behnia
,
M.
,
Armfield
,
S. W.
, and
Srinarayana
,
N.
,
2011
, “
Cooling Solutions in an Operational Data Centre: A Case Study
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2279
2291
.
106.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2014
, “
Room Level Modeling of Air Flow in a Contained Data Center Aisle
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011011
.
107.
Simons
,
R.
,
Moran
,
K.
,
Antonetti
,
V.
, and
Chu
,
R.
,
1982
, “
Thermal Design of the IBM 3081 Computer
,”
National Electronic Packaging and Production Conference
, Anaheim, CA, Feb. 23–25, pp. 124–141.
108.
Chu
,
R.
,
Hwang
,
U.
, and
Simons
,
R.
,
1982
, “
Conduction Cooling for an LSI Package: A One Dimensional Approach
,”
IBM J. Res. Dev.
,
26
(
1
), pp.
45
54
.
109.
Hwang
,
U.
, and
Moran
,
K.
,
1990
, “
Cold Plate for IBM Thermal Conduction Module Electronic Modules
,”
Heat Transfer in Electronic and Microelectronic Equipment
, Vol.
29
, A. E. Bergles, ed., Hemisphere, New York, pp.
495
508
.
110.
Delia
,
D.
,
Gilgert
,
T.
,
Graham
,
N.
,
Hwang
,
U.
,
Ing
,
P.
,
Kan
,
J.
,
Kemink
,
R.
,
Maling
,
G.
,
Martin
,
R.
,
Moran
,
K.
,
Reyes
,
J.
,
Schmidt
,
R.
, and
Steinbrecher
,
R.
,
1992
, “
System Cooling Design for the Water-Cooled IBM Enterprise System/9000 Processors
,”
IBM J. Res. Dev.
,
36
(
4
), pp.
791
803
.
111.
Lei
,
N.
,
Skandakumaran
,
P.
, and
Ortega
,
A.
,
2006
, “
Experiments and Modeling of Multilayer Copper Minichannel Heat Sinks in Single-Phase Flow
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp. 9–18.
112.
Dede
,
E.
,
2014
, “
Single-Phase Microchannel Cold Plate for Hybrid Vehicle Electronics
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 9–13, pp. 118–124.
113.
Iyengar
,
M.
,
David
,
M.
,
Parida
,
P.
,
Kamath
,
V.
,
Kochuparambil
,
B.
,
Graybill
,
D.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Simons
,
R.
,
Schmidt
,
R.
, and
Chainer
,
T.
,
2012
, “
Server Liquid Cooling With Chiller-Less Data Center Design to Enable Significant Energy Savings
,”
IEEE Semiconductor Thermal Measurement and Management Sysposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp. 212–223.
114.
David
,
M.
,
Iyengar
,
M.
,
Parida
,
P.
,
Simons
,
R.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Schmidt
,
R.
, and
Chainer
,
T.
,
2012
, “
Experimental Characterization of an Energy Efficient Chiller-Less Data Center Test Facility With Warm Water Cooled Servers
,”
28th Annual IEEE Semiconductor Thermal and Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp. 232–237.
115.
Parida
,
P.
,
David
,
M.
,
Iyengar
,
M.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Kamath
,
V.
,
Kochuparambil
,
B.
, and
Chainer
,
T.
,
2012
, “
Experimental Investigation of Water Cooled Server Microprocessors and Memory Devices in an Energy Efficient Chiller-Less Data Center
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp. 224–231.
116.
Iyengar
,
M.
,
David
,
M.
,
Parida
,
P.
,
Kamath
,
V.
,
Kochuparambil
,
B.
,
Graybill
,
D.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Simons
,
R.
,
Schmidt
,
R.
, and
Chainer
,
T.
,
2012
, “
Extreme Energy Efficiency Using Water Cooled Server Inside a Chiller-Less Data Center
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 137–149.
117.
David
,
M.
,
Iyengar
,
M.
,
Parida
,
P.
,
Simons
,
R.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Schmidt
,
R.
, and
Chainer
,
T.
,
2012
, “
Impact of Operating Conditions on a Chiller-Less Data Center Test Facility With Liquid Cooled Servers
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 562–573.
118.
Eiland
,
R.
,
Fernandes
,
J.
,
Vallejo
,
M.
,
Agonafer
,
D.
, and
Mulay
,
V.
,
2014
, “
Flow Rate and Inlet Temperature Considerations for Direct Immersion of a Single Server in Mineral Oil
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), Orlando, FL, May 27–30, pp. 706–714.
119.
Tuma
,
P.
,
2010
, “
The Merits of Open Bath Immersion Cooling of Datacom Equipment
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp. 123–131.
120.
Patterson
,
M. K.
, and
Fenwick
,
D.
,
2008
, “
The State of Data Center Cooling: A Review of Current Air and Liquid Cooling Solutions
,” Intel, Digital Enterprise Group, White Paper.
121.
Blough
,
B.
, ed.,
2011
, “
Qualitative Analysis of Cooling Architectures for Data Centers
,” The Green Grid, Beaverton, OR, Report No. 30.
122.
Niemann
,
J.
,
2008
, “
Hot Aisle vs. Cold Aisle Containment
,” American Power Conversion, West Kingston, RI, White Paper No. 135.
123.
Niemann
,
J.
,
Brown
,
K.
, and
Avelar
,
V.
,
2010
, “
Hot-Aisle vs. Cold-Aisle Containment for Data Centers
,” American Power Conversion, West Kingston, RI, White Paper No. 135, rev. 1.
124.
Tozer
,
R.
, and
Salim
,
M.
,
2010
, “
Data Center Air Management Metrics-Practical Approach
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Las Vegas, NV, June 2–5, pp. 1–8.
125.
Gondipalli
,
S.
,
Sammakia
,
B.
,
Bhopte
,
S.
,
Schmidt
,
R.
,
Iyengar
,
M.
, and
Murray
,
B.
,
2009
, “
Optimization of Cold Aisle Isolation Designs for a Data Center With Roofs and Doors Using Slits
,”
ASME
Paper No. InterPACK2009-89203.
126.
Emerson Network Power,
2010
, “
Combining Cold Aisle Containment With Intelligent Control to Optimize Data Center Cooling Efficiency
,” Emerson Network Power, Columbus, OH, White Paper.
127.
Pervila
,
M.
, and
Kangasharju
,
J.
,
2011
, “
Cold Air Containment
,”
2nd ACM SIGCOMM Workshop on Green Networking
(
GreenNets '11
), Toronto, ON, Canada, Aug. 15–19, pp. 7–12.
128.
Schmidt
,
R.
,
Vallury
,
A.
, and
Iyengar
,
M.
,
2011
, “
Energy Savings Through Hot and Cold Aisle Containment Configurations for Air Cooled Servers in Data Centers
,”
ASME
Paper No. IPACK2011-52206.
129.
Shrivastava
,
S. K.
,
Calder
,
A. R.
, and
Ibrahim
,
M.
,
2012
, “
Quantitative Comparison of Air Containment Systems
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 68–77.
130.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2011
, “
Energy Modeling Of Air-Cooled Data Centers—Part l: The Optimization of Enclosed Aisle Configurations
,”
ASME
Paper No. IPACK2011-52003.
131.
Xu
,
Y.
,
Gao
,
Z.
, and
Deng
,
Y.
,
2013
, “
Analyzing the Cooling Behavior of Hot and Cold Aisle Containment in Data Centers
,”
4th IEEE International Conference on Emerging Intelligent Data and Web Technologies
(
EIDWT
), Xi'an, China, Sept. 9–11, pp. 685–689.
132.
Sundaralingam
,
V.
,
Arghode
,
V. K.
,
Joshi
,
Y.
, and
Phelps
,
W.
,
2015
, “
Experimental Characterization of Various Cold Aisle Containment Configurations for Data Centers
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011007
.
133.
Muradlidharan
,
B.
,
Ibrahim
,
M.
,
Shrivistava
,
S.
,
Alkharabsheh
,
S.
, and
Sammakia
,
B.
,
2013
, “
Advantages of Cold Aisle Containemnt (CAC) System and Its Leakage Quantification
,”
ASME
Paper No. IPACK2013-73201.
134.
Kennedy
,
J.
,
2012
, “
Ramification of Server Airflow Leakage in Data Centers With Aisle Containment
,” Tate Access Floors, Jessup, MD, White Paper.
135.
Alkharabsheh
,
S. A.
,
Muralidharan
,
B.
,
Ibrahim
,
M.
,
Shrivastava
,
S.
, and
Sammakia
,
B.
,
2013
, “
Open and Contained Cold Aisle Experimentally Validated CFD Model Implementing CRAC and Servers Fan Curves on a Testing Data Center
,”
ASME
Paper No. IPACK2013-73214.
136.
Alkharabsheh
,
S. A.
,
Shrivastava
,
S. K.
, and
Sammakia
,
B. G.
,
2013
, “
Effect of Containment System Perforation on Data Center Flow Rates and Temperatures
,”
ASME
Paper No. IPACK2013-73216.
137.
Gebrehiwot
,
B.
,
Dhiman
,
N.
,
Rajagopalan
,
K.
,
Agonafer
,
D.
,
Kannan
,
N.
,
Hoverson
,
J.
, and
Kaler
,
M.
,
2013
, “
CFD Modeling of Indirect/Direct Evaporative Cooling Unit for Modular Data Center Applications
,”
ASME
Paper No. IPACK2013-73302.
138.
Vasani
,
R.
, and
Agonafer
,
D.
,
2014
, “
Numerical Simulation of Fogging in a Square Duct—A Data Center Perspective
,”
30th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 9–13, pp. 45–52.
139.
Seger
,
D.
, and
Solberg
,
A.
, “
Economizer Performance: Applying CFD Modeling to the Data Center's Exterior
,” SearchDataCenter.com, accessed October 26, 2014, http://searchdatacenter.techtarget.com/tip/Economizer-performance-Applying-CFD-modeling-to-the-data-centers-exterior
140.
Beaty
,
D. L.
,
2004
, “
Liquid Cooling: Friend or Foe
,”
ASHRAE Trans.
,
110
(
2
), pp. 643–652.
141.
Ellsworth
,
M. J.
,
Campbell
,
L. A.
,
Simons
,
R. E.
,
Iyengar
,
M.
, and
Schmidt
,
R. R.
,
2008
, “
The Evolution of Water Cooling for IBM Large Server Systems: Back to the Future
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
), Lake Buena Vista, FL, May 28–31, pp. 266–274.
142.
ASHRAE TC 9.9
,
2011
, “
Thermal Guidelines for Liquid Cooled Data Processing Environments
,” American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), White Paper.
143.
Heydari
,
A.
, and
Sabounchi
,
P.
,
2004
, “
Refrigeration Assisted Spot Cooling of a High Heat Density Data Center
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '04
), Las Vegas, NV, June 1–4, pp. 601–606.
144.
Mulay
,
V.
,
Agonafer
,
D.
, and
Schmidt
,
R.
,
2008
, “
Liquid Cooling for Thermal Management of Data Centers
,”
ASME
Paper No. IMECE2008-68743.
145.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2009
, “
Server Rack Rear Door Heat Exchanger and the New ASHRAE Recommended Environmental Guidelines
,”
ASME
Paper No. InterPACK2009-89212.
146.
Tsukamoto
,
T.
,
Takayoshi
,
J.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2009
, “
Refrigeration Heat Exchanger Systems for Server Rack Cooling in Data Centers
,”
ASME
Paper No. InterPACK2009-89258.
147.
Iyengar
,
M.
,
Schmidt
,
R.
,
Kamath
,
V.
, and
Kochuparambil
,
B.
,
2011
, “
Experimental Characterization of Server Rack Energy Use at Elevated Ambient Temperatures
,”
ASME
Paper No. IPACK2011-52207.
148.
Iyengar
,
M.
,
Schmidt
,
R.
, and
Caricari
,
J.
,
2010
, “
Reducing Energy Usage in Data Centers Through Control of Room Air Conditioning Units
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), Las Vegas, NV, June 2–5, pp. 1–11.
149.
Fernandes
,
J.
,
Ghalambor
,
S.
,
Agonafer
,
D.
,
Kamath
,
V.
, and
Schmidt
,
R.
,
2012
, “
Multi-Design Variable Optimization for a Fixed Pumping Power of a Water-Cooled Cold Plate for High Power Electronics Applications
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 684–692.
150.
Goth
,
G.
,
Arvelo
,
A.
,
Eagle
,
J.
,
Ellsworth
,
M.
,
Marston
,
K.
,
Sinha
,
A.
, and
Zitz
,
J.
,
2012
, “
Thermal and Mechanical Analysis and Design of the IBM Power 775 Water Cooled Supercomputing Central Electronics Complex
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp. 700–709.
151.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Paredes
,
S.
,
Michel
,
B.
,
Colgan
,
E.
, and
Bezama
,
P.
,
2009
, “
Hotspot-Adapted Cold Plates to Maximize System Efficiency
,”
15th IEEE International Workshop on Thermal Investigations of ICs and Systems
(THERMINIC 2009), Leuven, Belgium, Oct. 7–9, pp. 150–156.
You do not currently have access to this content.