Recently, much attention has been given to reducing the thermal resistance attributed to thermal interface materials (TIMs) in electronic devices, which contribute significantly to the overall package thermal resistance. Thermal transport measured experimentally through several vertically aligned carbon nanotube (VACNT) array TIMs anchored to copper and silicon substrates is considered. A steady-state infrared (IR) microscopy experimental setup was designed and utilized to measure the cross-plane total thermal resistance of VACNT TIMs. Overall thermal resistance for the anchored arrays ranged from 4to50mm2KW-1. These values are comparable to the best current TIMs used for microelectronic packaging. Furthermore, thermal stability after prolonged exposure to a high-temperature environment and thermal cycling tests shows limited deterioration for an array anchored using a silver-loaded thermal conductive adhesive (TCA).

References

References
1.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2011
, “
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
, pp.
2
11
.10.1016/j.ijthermalsci.2011.10.014
2.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.10.1103/PhysRevLett.87.215502
3.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
,
2006
, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
(
1
), pp.
96
100
.10.1021/nl052145f
4.
Pettes
,
M. T.
, and
Shi
,
L.
,
2009
, “
Thermal and Structural Characterizations of Individual Single-, Double-, and Multi-Walled Carbon Nanotubes
,”
Adv. Funct. Mater.
,
19
(
24
), pp.
3918
3925
.10.1002/adfm.200900932
5.
Mingo
,
N.
, and
Broido
,
D.
,
2005
, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
,
95
(
9
), p.
096105
.10.1103/PhysRevLett.95.096105
6.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
7.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
8.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
9.
Cola
,
B. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2008
, “
Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces
,”
ASME J. Heat Transfer
,
130
(
11
), p.
114503
.10.1115/1.2969758
10.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
,
2009
, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3490
3503
.10.1016/j.ijheatmasstransfer.2009.03.011
11.
Panzer
,
M. A.
,
Duong
,
H. M.
,
Okawa
,
J.
,
Shiomi
,
J.
,
Wardle
,
B. L.
,
Maruyama
,
S.
, and
Goodson
,
K. E.
,
2010
, “
Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films
,”
Nano Lett.
,
10
(
7
), pp.
2395
2400
.10.1021/nl100443x
12.
Cross
,
R.
,
Cola
,
B. A.
,
Fisher
,
T. S.
,
Xu
,
X.
,
Gall
,
K.
, and
Graham
,
S.
,
2010
, “
A Metallization and Bonding Approach for High Performance Carbon Nanotube Thermal Interface Materials
,”
Nanotechnology
,
21
(
44
), p.
445705
.10.1088/0957-4484/21/44/445705
13.
Yao
,
Y.
,
Moon
,
K. S.
,
McNamara
,
A. J.
, and
Wong
,
C. P.
,
2013
, “
Water Vapor Treatment for Decreasing the Adhesion Between Vertically Aligned Carbon Nanotubes and the Growth Substrate
,”
Chem. Vap. Deposition
,
19
(
7–9
), pp.
224
227
.10.1002/cvde.201304319
14.
McNamara
,
A. J.
,
Sahu
,
V.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2011
, “
Infrared Imaging Microscope as an Effective Tool for Measuring Thermal Resistance of Emerging Interface Materials
,”
ASME
Paper No. AJTEC2011-44421.10.1115/AJTEC2011-44421
15.
Yao
,
Y.
,
Li
,
Z.
, and
Wong
,
C. P.
,
2013
, “
Quality Control of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
11
), pp.
1804
1810
.10.1109/TCPMT.2013.2278174
16.
Lin
,
W.
,
Shang
,
J.
,
Gu
,
W.
, and
Wong
,
C. P.
,
2012
, “
Parametric Study of Intrinsic Thermal Transport in Vertically Aligned Multi-Walled Carbon Nanotubes Using a Laser Flash Technique
,”
Carbon
,
50
(
4
), pp.
1591
1603
.10.1016/j.carbon.2011.11.038
17.
Lin
,
Z.
,
Li
,
Z.
,
Moon
,
K. S.
,
Fang
,
Y.
,
Yao
,
Y.
,
Li
,
L.
, and
Wong
,
C. P.
,
2013
, “
Robust Vertically Aligned Carbon Nanotube–Carbon Fiber Paper Hybrid as Versatile Electrodes for Supercapacitors and Capacitive Deionization
,”
Carbon
,
63
, pp.
547
553
.10.1016/j.carbon.2013.07.033
18.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.10.1063/1.1808874
19.
Xue
,
Q. Z.
,
2006
, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
,
17
(
6
), pp.
1655
1660
.10.1088/0957-4484/17/6/020
20.
Lin
,
W.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2009
, “
A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube–Polymer Nanocomposites: Toward Applications as Thermal Interface Materials
,”
Adv. Mater.
,
21
(
23
), pp.
2421
2424
.10.1002/adma.200803548
21.
Volkov
,
A. N.
,
Shiga
,
T.
,
Nicholson
,
D.
,
Shiomi
,
J.
, and
Zhigilei
,
L. V.
,
2012
, “
Effect of Bending Buckling of Carbon Nanotubes on Thermal Conductivity of Carbon Nanotube Materials
,”
J. Appl. Phys.
,
111
(
5
), p.
053501
.10.1063/1.3687943
You do not currently have access to this content.