At present, single-phase liquid, forced convection cooled heat sinks with fins are used to cool power electronics in hybrid electric vehicles (HEVs). Although use of fins in the cooling channels increases heat transfer rates considerably, a second low-temperature radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the objective of eliminating this additional low-temperature radiator and pumping system in HEVs, an alternative cooling technology, subcooled boiling in the cooling channels, was investigated in the present study. Numerical heat transfer simulations were performed using subcooled boiling in the power electronics cooling channels with the coolant supplied from the existing main engine cooling system. Results show that this subcooled boiling system is capable of removing 25% more heat from the power electronics than the conventional forced convection cooling technology, or it can reduce the junction temperature of the power electronics at the current heat removal rate. With the 25% increased heat transfer option, high heat fluxes up to 250 W/cm2 (typical for wideband-gap semiconductor applications) are possible by using the subcooled boiling system.

References

References
1.
Narumanchi
,
S.
,
Hassani
,
V.
, and
Bharathan
,
D.
,
2005
, “
Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-540-38787.
2.
Narumanchi
,
S.
,
Hassani
,
V.
,
Bharathan
,
D.
, and
Troshko
,
A.
,
2006
, “
Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp.
204
214
.10.1109/ITHERM.2006.1645344
3.
Narumanchi
,
S.
,
Troshko
,
A.
,
Bharathan
,
D.
, and
Hassani
,
V.
,
2008
, “
Numerical Simulations of Nucleate Boiling in Impinging Jets: Applications in Power Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
51
(
1
), pp.
1
12
.10.1016/j.ijheatmasstransfer.2007.05.026
4.
Rau
,
M. J.
, and
Garimella
,
S. V.
,
2013
, “
Local Two-Phase Heat Transfer From Arrays of Confined and Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
67
, pp.
487
498
.10.1016/j.ijheatmasstransfer.2013.08.041
5.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2009
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
501
512
.10.1109/TCAPT.2008.2006907
6.
Turek
,
L. J.
,
Rini
,
D. P.
,
Saarloos
,
B. A.
, and
Chow
,
L. C.
,
2008
, “
Evaporative Spray Cooling of Power Electronics Using High Temperature Coolant
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
),
Orlando, FL
, May 28–31, pp.
346
351
.http://dx.doi.org/10.1109/ITHERM.2008.4544290
7.
Bostanci
,
H.
,
Van Ee
,
D.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
,
2009
, “
Spray Cooling of Power Electronics Using High Temperature Coolant and Enhanced Surface
,”
IEEE Vehicle Power and Propulsion Conference
(
VPPC '09
),
Dearborn, MI
, Sept. 7–10, pp.
609
613
.10.1109/VPPC.2009.5289793
8.
Campbell
,
J. B.
,
2004
, “
A Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronics Devices
,” Master's thesis, University of Tennessee–Knoxville, Knoxville, TN.
9.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2013
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111014
.10.1115/1.4024622
10.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.10.1115/1.4023215
11.
Bennion
,
K.
, and
Kelly
,
K.
,
2009
, “
Rapid Modeling of Power Electronics Thermal Management Technologies
,”
5th IEEE Vehicle Power and Propulsion Conference
(
VPPC '09
),
Dearborn, MI
, Sept. 7–10, pp.
622
629
.10.1016/j.ijheatmasstransfer.2007.05.026
12.
McAdams
,
W. H.
,
Minden
,
C. S.
,
Carl
,
R.
,
Picornell
,
D. M.
, and
Dew
,
J. E.
,
1949
, “
Heat Transfer at High Rates to Water With Surface Boiling
,”
Ind. Eng. Chem. Res.
,
41
(
9
), pp.
1945
1963
.10.1021/ie50477a027
13.
Jens
,
W. H.
, and
Lottes
,
P. A.
,
1951
, “
Analysis of Heat Transfer, Burnout, Pressure Drop and Density Data for High-Pressure Water
,” Argonne National Laboratory, Argonne, IL, Report No. ANL-4627.
14.
Thom
,
J. R. S.
,
Walker
,
W. M.
,
Fallon
,
T. A.
, and
Reising
,
G. F. S.
,
1965
, “
Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli
,”
Proc. Inst. Mech. Eng.
,
180
(
Pt. 3C
), pp.
226
246
.10.1243/PIME_CONF_1965_180_117_02
15.
Shah
,
M. M.
,
1977
, “
A General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli
,”
ASHRAE Trans.
,
83
(
1
), pp.
202
217
.
16.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
395
401
.10.1115/1.2824263
17.
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
,
Smith
,
R. K.
,
Ritter
,
J.
,
Vijlbrief
,
T.
, and
Menger
,
Y.
,
2014
, “
Subcooled Flow Boiling of Ethylene Glycol/Water Mixtures in a Bottom-Heated Tube
,”
Int. J. Heat Mass Transfer
,
72
, pp.
637
645
.10.1016/j.ijheatmasstransfer.2014.01.051
18.
Freeland
,
T.
,
2002
, “Antifreeze,” http://avenger-valkyrie.org/techinfo/antifreeze.htm
19.
Kim
,
S.
, and
Mudawar
,
I.
,
2012
, “
Consolidated Method to Predicting Pressure Drop and Heat Transfer Coefficient for Both Subcooled and Saturated Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3720
3731
.10.1016/j.ijheatmasstransfer.2012.02.061
You do not currently have access to this content.