The increasing integration of high performance processors and dense circuits in current computing devices has produced high heat flux in localized areas (hot spots), which limits their performance and reliability. To control the hot spots on a central processing unit (CPU), many researchers have focused on active cooling methods such as thermoelectric coolers (TECs) to avoid thermal emergencies. This paper presents optimized thermoelectric modules on top of the CPU combined with a conventional air-cooling device to reduce the core temperature and at the same time harvest waste heat energy generated by the CPU. To control the temperature of the cores, we attach small-sized TECs to the CPU and use thermoelectric generators (TEGs) placed on the rest of the CPU to convert waste heat energy into electricity. This study investigates design alternatives with an analytical model considering the nonuniform temperature distribution based on two-node thermal networks. The results indicate that we are able to attain more energy from the TEGs than energy consumption for running the TECs. In other words, we can allow the harvested heat energy to be reused to power other components and reduce cores temperature simultaneously. Overall, the idea of simultaneous core cooling and waste heat harvesting using thermoelectric modules on a CPU is a promising method to control the problem of heat generation and to reduce energy consumption in a computing device.

References

References
1.
Hatakeyama
,
T.
, and
Ishizuka
,
M.
,
2014
, “
Thermal Analysis for Package Cooling Technology Using Phase-Change Material by Using Thermal Network Analysis and CFD Analysis With Enthalpy Porosity Method
,”
Heat Transfer Eng.
,
35
(
14–15
), pp.
1227
1234
.10.1080/01457632.2013.876340
2.
Mohan
,
R.
, and
Govindarajan
,
P.
,
2011
, “
Thermal Analysis of CPU With CCC and Copper Base Plate Heat Sinks Using CFD
,”
Heat Transfer: Asian Res.
,
40
(
3
), pp.
217
232
.10.1002/htj.20342
3.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
15
24
.10.1016/j.applthermaleng.2014.01.074
4.
Zhang
,
H. Y.
,
Mui
,
Y. C.
, and
Tarin
,
M.
,
2010
, “
Analysis of Thermoelectric Cooler Performance for High Power Electronic Packages
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
561
568
.10.1016/j.applthermaleng.2009.10.020
5.
Sauciuc
,
I.
,
Erturk
,
H.
,
Chrysler
,
G.
,
Bala
,
V.
, and
Mahajan
,
R.
,
2005
, “
Thermal Devices Integrated With Thermoelectric Modules With Applications to CPU Cooling
,”
ASME
Paper No. IPACK2005-73243.10.1115/IPACK2005-73243
6.
Sauciuc
,
I.
,
Rasher
,
R.
,
Chang
,
J.
,
Erturk
,
H.
,
Chrysler
,
G.
,
Chiu
,
C.
, and
Mahajan
,
R.
,
2005
, “
Thermal Performance and Key Challenges for Future CPU Cooling Technologies
,”
ASME
Paper No. IPACK2005-73242.10.1115/IPACK2005-73242
7.
Chein
,
R.
, and
Huang
,
G.
,
2004
, “
Thermoelectric Cooler Application in Electronic Cooling
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2207
2217
.10.1016/j.applthermaleng.2004.03.001
8.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T. T.
,
2002
, “
Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
356
365
.10.1109/TCAPT.2002.800600
9.
Snyder
,
G. J.
,
Soto
,
M.
,
Alley
,
R.
,
Koester
,
D.
, and
Conner
,
B.
,
2006
, “
Hot Spot Cooling Using Embedded Thermoelectric Coolers
,”
22nd IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
),
Dallas, TX
, Mar. 14–16, pp.
135
143
.10.1109/STHERM.2006.1625219
10.
Redmond
,
M.
, and
Kumar
,
S.
,
2015
, “
Optimization of Thermoelectric Coolers for Hotspot Cooling in Three-Dimensional Stacked Chips
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011006
.10.1115/1.4028254
11.
Ranjan
,
R.
,
Turney
,
J. E.
,
Lents
,
C. E.
, and
Faustino
,
V. H.
,
2014
, “
Design of Thermoelectric Modules for High Heat Flux Cooling
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041001
.10.1115/1.4028118
12.
Emil
,
S.
, and
Robert
,
J. S.
,
2009
, “
Experimental Characterization of Thermoelectric Modules and Comparison With Theoretical Models for Power Generation
,”
J. Electron. Mater.
,
38
(
7
), pp.
1239
1244
.10.1007/s11664-009-0744-0
13.
Zhou
,
Y.
,
Paul
,
S.
, and
Bhunia
,
S.
,
2008
, “
Harvesting Wasted Heat in Microprocessor Using Thermoelectric Generators: Modeling, Analysis and Measurement
,”
Design, Automation and Test in Europe Conference and Exhibition
(
DATE '08
), Munich, Germany, Mar. 10–14, pp.
98
103
.10.1109/DATE.2008.4484669
14.
Gunawan
,
A.
,
Lin
,
C.
,
Buttry
,
D. A.
,
Mujica
,
V.
,
Taylor
,
R. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2013
, “
Liquid Thermoelectrics: Review of Recent and Limited New Data of Thermogalvanic Cell Experiments
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
4
), pp.
304
323
.10.1080/15567265.2013.776149
15.
Gould
,
C. A.
,
Shammas
,
N. Y. A.
,
Grainger
,
S.
, and
Taylor
,
I.
,
2011
, “
Thermoelectric Cooling of Microelectronic Circuits and Waste Heat Electrical Power Generation in a Desktop Personal Computer
,”
Mater. Sci. Eng. B
,
176
(
4
), pp.
316
325
.10.1016/j.mseb.2010.09.010
16.
Wu
,
C.
,
2013
, “
Architectural Thermal Energy Harvesting Opportunities for Sustainable Computing
,”
IEEE Comput. Archit. Lett.
,
13
(
2
), pp.
65
68
.10.1109/L-CA.2013.16
17.
Guenin, B., 2002, “Simplified Transient Model for IC Packages,” Elec. Cooling, Aug., http://www.electronics-cooling.com/2002/08/simplified-transient-model-for-ic-packages/
18.
Cengel
,
Y. A.
,
2007
,
Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. 3.
19.
Elanggar
,
M. H. A.
,
Abdullah
,
M. Z.
, and
Mujeebu
,
M. A.
,
2011
, “
Experimental Analysis and FEM Simulation of Finned U-Shape Multi Heat Pipe for Desktop PC Cooling
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2937
2944
.10.1016/j.enconman.2011.03.001
20.
Skadron
,
K.
,
Stan
,
M. R.
,
Huang
,
W.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
, and
Tarjan
,
D.
,
2003
, “
Temperature-Aware Microarchitecture
,”
30th Annual International Symposium on Computer Architecture
(
ISCA'03
), San Diego, CA, June 9–11, pp.
2
13
.10.1109/ISCA.2003.1206984
21.
SPEC
,
2006
, “
CINT2006 Benchmarks
,”
Standard Performance Evaluation Corporation
,
Gainesville, VA
, http://www.spec.org/cpu2006/CINT2006
22.
Kreider
,
J. F.
, and
Rabi
,
A.
,
1994
,
Heating and Cooling of Buildings: Design for Efficiency
,
McGraw-Hill
,
New York
, Chap. 8.
23.
Huang
,
W.
,
Ghosh
,
S.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
,
Skadron
,
K.
, and
Stan
,
M. R.
,
2006
, “
HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Design
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
14
(
5
), pp.
501
513
.10.1109/TVLSI.2006.876103
24.
Tellurex
,
2010
, “Frequently Asked Questions About Our Power Generation Technology,” Tellurex Corp., Traverse City, MI, http://tellurex.com/wp-content/uploads/2014/03/seebeck-faq.pdf
25.
Alekseev
,
P. N.
,
Semchenkov
,
Y. M.
, and
Shimkevich
,
A. L.
,
2012
, “
Aqueous Nanofluid as a Two-Phase Coolant for PWR
,”
Sci. Technol. Nucl. Install.
,
2012
(
2012
), p. 214381.10.1155/2012/214381
26.
Wu
,
H.
,
Sun
,
K.
,
Zhang
,
J.
, and
Xing
,
Y.
,
2013
, “
A TEG Efficiency Booster With Buck-Boost Conversion
,”
J. Electron. Mater.
,
42
(
7
), pp.
1737
1744
.10.1007/s11664-012-2407-9
27.
Lee
,
S.
,
Phelan
,
P. E.
,
Dai
,
L.
,
Prasher
,
R.
,
Gunawan
,
A.
, and
Taylor
,
R. A.
,
2014
, “
Experimental Investigation of the Latent Heat of Vaporization in Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
104
(
15
), p.
151908
.10.1063/1.4872176
28.
Huang
,
W.
,
Sakdron
,
K.
,
Gurumurthi
,
S.
,
Ribando
,
R. J.
, and
Stan
,
M. R.
,
2009
, “
Differentiating the Roles of IR Measurement and Simulation for Power and Temperature-Aware Design
,”
IEEE International Symposium on Performance Analysis of Systems and Software
(
ISPASS 2009
),
Boston, MA
, Apr. 26–28.10.1109/ISPASS.2009.4919633
29.
Disalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
(
5428
), pp.
703
706
.10.1126/science.285.5428.703
30.
Choday
,
S. H.
,
2014
, “
Thin-Film Thermoelectric Devices for On-Chip Cooling and Energy Harvesting
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
31.
Sullivan
,
O. A.
,
2012
, “
Embedded Thermoelectric Devices for On-Chip Cooling and Power Generation
,” Master''s thesis, Georgia Institute of Technology, Atlanta, GA.
32.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
33.
Rowe
,
D. M.
,
2012
,
Modules, Systems, and Applications in Thermoelectrics
,
CRC Press
,
Boca Raton, FL
, Chap. 18.
34.
Yan
,
Y.
, and
Malen
,
J. A.
,
2013
, “
Periodic Heating Amplifies the Efficiency of Thermoelectric Energy Conversion
,”
Energy Environ. Sci.
,
6
(
4
), pp.
1267
1273
.10.1039/C3EE24158K
35.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
You do not currently have access to this content.