Various designs of compliant interconnects are being pursued in universities and industry to accommodate the coefficient of thermal expansion (CTE) mismatch between die and substrate or substrate and board. Although such interconnects are able to mechanically decouple the components, electrical parasitics of compliant interconnects are often high compared to the electrical parasitics of solder bump or solder ball interconnects. This increase in electrical parasitics is due to the fact that compliant interconnects typically having longer path lengths and smaller cross-sectional areas to provide compliance, which in turn, increases their electrical parasitics. In this paper, we present a mixed array of compliant interconnects as a tradeoff between mechanical compliance and electrical parasitics. In the proposed implementation, the die area is subdivided into three regions where high compliance, medium-compliance, and low-compliance interconnect variants are situated in the outer, middle, and inner regions of the die, respectively. By introducing the low-compliance variants into the assembly, interconnects with greatly reduced electrical parasitics can be used as power/ground interconnects, while the high-compliance interconnects, situated near the die edges, can be used as signal interconnects. This paper demonstrates the implementation of this configuration and also presents the experimental characterization of such heterogeneous array of interconnects.

References

References
1.
Sitaraman
,
S. K.
, and
Kacker
,
K.
,
2009
, “
Mechanically Compliant I/O Interconnects and Packaging
,”
Integrated Interconnect Technologies for 3D Nanoelectronic Systems
,
M. S.
Bakir
and
J. D.
Meindl
, eds.,
Artech House
, Norwood, MA, Chap. 3.
2.
Dudek
,
R.
,
Walter
,
H.
,
Doering
,
R.
,
Michel
,
B.
,
Meyer
,
T.
,
Zapf
,
J.
, and
Hedler
,
H.
,
2005
, “
Thermo-Mechanical Design for Reliability of WLPs With Compliant Interconnects
,”
7th Electronic Packaging Technology Conference
(
EPTC 2005
), Singapore, Dec. 7–9, pp.
328
334
.10.1109/EPTC.2005.1614416
3.
Zhu
,
Q.
,
Ma
,
L.
, and
Sitaraman
,
S. K.
,
2004
, “
Development of G-Helix Structure as Off-Chip Interconnect
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
237
246
.10.1115/1.1756148
4.
Kacker
,
K.
,
Sokol
,
T.
, and
Sitaraman
,
S. K.
,
2007
, “
FlexConnects: A Cost-Effective Implementation of Compliant Chip-To-Substrate Interconnects
,”
57th Electronic Components and Technology Conference
(
ECTC '07
), Reno, NV, May 29–June 1, pp.
1678
1684
.10.1109/ECTC.2007.374020
5.
Yang
,
H. S.
, and
Bakir
,
M. S.
,
2010
, “
3D Integration of CMOS and MEMS Using Mechanically Flexible Interconnects (MFI) and Through Silicon Vias (TSV)
,”
60th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 1–4, pp.
822
828
.10.1109/ECTC.2010.5490716
6.
Xu
,
P.
,
Pfeiffenberger
,
A. H.
,
Ellis
,
C. D.
, and
Hamilton
,
M. C.
,
2014
, “
Fabrication and Characterization of Double Helix Structures for Compliant and Reworkable Electrical Interconnects
,”
J. Microelectromech. Syst.
,
23
(
5
), pp.
1219
1227
.10.1109/JMEMS.2014.2309121
7.
Zhang
,
C.
,
Yang
,
H. S.
, and
Bakir
,
M. S.
,
2014
, “
Mechanically Flexible Interconnects (MFIs) With Highly Scalable Pitch
,”
J. Micromech. Microeng.
,
24
(
5
), p.
055024
.10.1088/0960-1317/24/5/055024
8.
Okereke
,
R.
, and
Sitaraman
,
S. K.
,
2013
, “
Three-Path Electroplated Copper Compliant Interconnects—Fabrication and Modeling Studies
,”
63rd Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 28–31, pp.
129
135
.10.1109/ECTC.2013.6575562
9.
Kacker
,
K.
,
Sokol
,
T.
,
Yun
,
W.
,
Swaminathan
,
M.
, and
Sitaraman
,
S. K.
,
2007
, “
A Heterogeneous Array of Off-Chip Interconnects for Optimum Mechanical and Electrical Performance
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
460
468
.10.1115/1.2804096
10.
Kobeda
,
E.
, and
Irene
,
E.
,
1986
, “
A Measurement of Intrinsic SiO2 Film Stress Resulting From Low Temperature Thermal Oxidation of Si
,”
J. Vac. Sci. Technol., B
,
4
(
3
), pp.
720
722
.10.1116/1.583603
11.
Michaelides
,
S.
, and
Sitaraman
,
S. K.
,
1998
, “
Effect of Material and Geometry Parameters on the Thermo-Mechanical Reliability of Flip-Chip Assemblies
,”
Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM’98
), Seattle, WA, May 27–30, pp.
193
200
.10.1109/ITHERM.1998.689540
12.
Engelmaier
,
W.
,
1987
, “
Results of the IPC Copper Foil Ductility Round-Robin Study
,” Testing of Metallic and Inorganic Coatings (STP947),
ASTM
, Philadelphia, PA, pp.
66
95
.10.1520/STP20030S
13.
Prabhu
,
A. S.
,
Barker
,
D. B.
, and
Pecht
,
M. G.
,
1995
, “
A Thermo-Mechanical Fatigue Analysis of High Density Interconnect Vias
,”
ASME Adv. Electron. Packag.
,
10
(
1
), pp.
187
216
.
14.
Pang
,
J. H.
,
Low
,
T.
,
Xiong
,
B.
, and
Che
,
F.
,
2003
, “
Design for Reliability (DFR) Methodology for Electronic Packaging Assemblies
,”
5th Electronics Packaging Technology Conference
(
EPTC 2003
), Singapore, Dec. 10–12, pp.
470
478
.10.1109/EPTC.2003.1271567
15.
Yeo
,
A.
,
Lee
,
C.
, and
Pang
,
J. H.
,
2006
, “
Flip Chip Solder Joint Reliability Analysis Using Viscoplastic and Elastic-Plastic-Creep Constitutive Models
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
355
363
.10.1109/TCAPT.2006.875893
16.
Bakir
,
M. S.
,
Reed
,
H. A.
,
Thacker
,
H. D.
,
Patel
,
C. S.
,
Kohl
,
P. A.
,
Martin
,
K. P.
, and
Meindl
,
J. D.
,
2003
, “
Sea of Leads (SoL) Ultrahigh Density Wafer-Level Chip Input/Output Interconnections for Gigascale Integration (GSI)
,”
IEEE Trans. Electron Devices
,
50
(
10
), pp.
2039
2048
.10.1109/TED.2003.816528
17.
Strickland
,
S.
,
Hester
,
J.
,
Gowan
,
A.
,
Montgomery
,
R.
,
Geist
,
D.
,
Blanche
,
J.
,
McGuire
,
G.
, and
Nash
,
T.
,
2011
, “
Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits
,” NASA Marshall Space Flight Center, Huntsville, AL, Report No. NASA/TM-2011-216463.
18.
Cheng
,
B.
,
De Bruyker
,
D.
,
Chua
,
C.
,
Sahasrabuddhe
,
K.
,
Shubin
,
I.
,
Cunningham
,
J. E.
,
Luo
,
Y.
,
Bohringer
,
K. F.
,
Krishnamoorthy
,
A. V.
, and
Chow
,
E. M.
2009
, “
Microspring Characterization and Flip-Chip Assembly Reliability
,”
IEEE Trans. Comp., Pack. Manuf. Tech.
,
3
(
2
), pp.
187
196
.10.1109/TCPMT.2012.221325010.1109/TCPMT.2012.2213250
You do not currently have access to this content.