Sn–Ag–Cu (SAC) alloys are considered as good replacements of Sn–Pb alloys which are banned due to the toxic nature of Pb. But, SAC alloys have a coarse microstructure that consists of β-Sn rich and eutectic phases. Nanoindentation is a useful technique to evaluate the mechanical properties at very small length scale. In this work, continuous stiffness measurement (CSM) nanoindentation setup (CSM Instruments SA, Peseux, Switzerland) is used to determine the individual phase mechanical properties like Young's modulus and hardness at high temperatures. It is demonstrated that these properties are a function of temperature for both β-Sn rich and eutectic phases. Loadings starting from 500 μN up to 5000 μN are used with 500 μN steps and average values are presented for Young's modulus and hardness. The loading rates applied are twice that of the loadings. High temperatures result in a higher creep deformation and therefore, to avoid it, different dwell times are used at peak loads. The special pileup effect, which is more significant at elevated temperatures, is determined and incorporated into the results. A better agreement is found with the previous studies.

References

References
1.
Wood
,
E. P.
, and
Nimmo
,
K. L.
,
1994
, “
In Search of New Lead-Free Electronic Solders
,”
J. Electron. Mater.
,
23
(
8
), pp.
709
713
.10.1007/BF02651363
2.
Sun
,
Y.
,
Liang
,
J.
,
Hui-Xu
,
Z.
,
Wang
,
G.
, and
Li
,
X.
,
2008
, “
Nanoindentation for Measuring Individual Phase Mechanical Properties of Lead Free Solder Alloy
,”
J. Mater. Sci.: Mater. Electron.
,
19
(
6
), pp.
514
521
10.1007/s10854-007-9374-6.
3.
Tu
,
K. N.
,
Gusak
,
A. M.
, and
Li
,
M.
,
2003
, “
Physics and Materials Challenges for Lead-Free Solders
,”
J. Appl. Phys.
,
93
(
3
), pp.
1335
1353
.10.1063/1.1517165
4.
Abtew
,
M.
, and
Selvaduray
,
G.
,
2000
, “
Lead-Free Solders in Microelectronics
,”
Mater. Sci. Eng.
,
27
(
5
), pp.
95
141
.10.1016/S0927-796X(00)00010-3
5.
Yu
,
D. Q.
,
Zhao
,
J.
, and
Wang
,
L.
,
2004
, “
Improvement on the Microstructure Stability, Mechanical and Wetting Properties of Sn–Ag–Cu Lead-Free Solder With the Addition of Rare Earth Elements
,”
J. Alloys Compd.
,
376
(
1–2
), pp.
170
175
.10.1016/j.jallcom.2004.01.012
6.
Rist
,
M. A.
,
Plumbridge
,
W. J.
, and
Cooper
,
S.
,
2006
, “
Creep-Constitutive Behavior of Sn–3.8Ag–0.7Cu Solder Using an Internal Stress Approach
,”
J. Electron. Mater.
,
35
(
5
), pp.
1050
1058
.10.1007/BF02692566
7.
Anderson
, I
. E.
,
Foley
,
J. C.
,
Cook
,
B. A.
,
Harringa
,
J.
,
Terpstra
,
R. L.
, and
Unal
,
O.
,
2001
, “
Alloying Effects in Near-Eutectic Sn–Ag–Cu Solder Alloys for Improved Microstructural Stability
,”
J. Electron. Mater.
,
30
(
9
), pp.
1050
1059
.10.1007/s11664-001-0129-5
8.
Hutson
,
S. M.
,
2002
, “
Rare-Earth Solders Make Better Bonds
,”
Photonics Spectra
,
36
(
5
), p.
12653
, http://www.photonics.com/Article.aspx?AID=12653
9.
Pei
,
M.
, and
Qu
,
J.
,
2008
, “
Effect of Lanthanum Doping on the Microstructure of Tin–Silver Solder Alloys
,”
J. Electron. Mater.
,
37
(
3
), pp.
331
338
.10.1007/s11664-007-0335-x
10.
Ma
,
X.
,
Qian
,
Y.
, and
Yoshida
,
F.
,
2002
, “
Effect of La on the Cu–Sn Intermetallic Compound (IMC) Growth and Solder Joint Reliability
,”
J. Alloys Compd.
,
334
(
1–2
), pp.
224
227
.10.1016/S0925-8388(01)01747-9
11.
Wu
,
C. M. L.
, and
Won
,
Y. W.
,
2007
, “
Rare-Earth Additions to Lead-Free Electronic Solders
,”
J. Mater. Sci.: Mater. Electron.
,
18
(
1–3
), pp.
77
91
10.1007/s10854-006-9022-6.
12.
Deng
,
X.
,
Chawla
,
N.
,
Chawla
,
K., K.
, and
Koopman
,
M.
,
2004
, “
Deformation Behavior of (Cu, Ag)–Sn Intermetallics by Nanoindentation
,”
Acta Mater.
,
52
(
14
), pp.
4291
4303
10.1016/j.actamat.2004.05.046.
13.
Rhee
,
H.
,
Lucas
,
J. P.
, and
Subramanian
,
K. N.
,
2002
, “
Micromechanical Characterization of Thermomechanically Fatigued Lead-Free Solder Joints
,”
J. Mater. Sci.: Mater. Electron.
,
13
(
8
), pp.
477
484
10.1023/A:1016108120365.
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
15.
Gao
,
F.
, and
Takemoto
,
T.
,
2006
, “
Mechanical Properties Evolution of Sn–3.5Ag Based Lead-Free Solders by Nanoindentation
,”
Mater. Lett.
,
60
(
19
), pp.
2315
2318
.10.1016/j.matlet.2005.12.132
16.
Cheng
,
Y. T.
, and
Chen
,
C. M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng., R
,
44
(
4–5
), pp.
91
149
.10.1016/j.mser.2004.05.001
17.
Chromik
,
R. R.
,
Vinci
,
R. P.
,
Allen
,
S. L.
, and
Notis
,
M. R.
,
2003
, “
Nanoindentation Measurements on Cu–Sn and Ag–Sn Intermetallics Formed in Pb-Free Solder Joints
,”
J. Mater. Res.
,
18
(
9
), pp.
2251
2261
.10.1557/JMR.2003.0314
You do not currently have access to this content.