Ohmic curing was utilized as a method to improve the conductivity of three-dimensional (3D) interconnects printed from silver-loaded conductive inks and pastes. The goal was to increase conductivity of the conductive path without inducing damage to the substrate. The 3D via/interconnect structure was routed within 3D polymeric substrates and had external and internal sections. The 3D structures were created by the additive manufacturing (AM) process of stereolithography (SL) and were designed to replicate manufacturing situations which are common in the fabrication of 3D structural electronics that involve a combination of AM and direct write (DW) processing steps. The photocurable resins the 3D substrates were made of possessed glass transition temperatures of 75 °C and 42 °C meaning that a nonthermal method to increase the conductivity of the printed traces was needed as the conductive inks tested in this study required oven cure temperatures greater than 100 °C to perform properly. Ohmic curing was shown to decrease the measured resistance of the via/interconnect structure without harming the substrate. Substrate damage was observed on thermally cured samples and was characterized by discoloration and scaling of the substrate. Resistance measurements of the via/interconnect structures revealed samples cured by the ohmic curing process performed equal or better than samples subjected to thermal curing. The work presented here demonstrates a method to overcome the thermal cure temperature limitations of polymeric substrates imposed on the processing parameters of conductive inks during the fabrication of 3D structural electronics and presents an example of overcoming a manufacturing process problem associated with this emerging technology. An ink selection process involving characterization of the compatibility of inks with the substrate material and the use of different inks for the via and interconnect sections was also discussed.

References

References
1.
Cano
,
J. L. C.
,
2011
, “
The Cambrian Explosion of Popular 3D Printing
,”
IJIMAI
,
1
(
4
), pp.
30
32
.10.9781/ijimai.2011.145
2.
Pearce
,
J. M.
,
Blair
,
C. M.
,
Laciak
,
K. J.
,
Andrews
,
R.
,
Nosrat
,
A.
, and
Zelenika-Zovko
,
I.
,
2010
, “
3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development
,”
J. Sustainable Dev.
,
3
(
4
), pp.
17
29
.10.5539/jsd.v3n4p17
3.
Malone
,
E.
, and
Lipson
,
H.
,
2007
, “
Fab@Home: The Personal Desktop Fabricator Kit
,”
Rapid Prototyping J.
,
13
(
4
), pp.
245
255
.10.1108/13552540710776197
4.
Roberson
,
D. A.
,
Espalin
,
D.
, and
Wicker
,
R. B.
,
2013
, “
3D Printer Selection: A Decision-Making Evaluation and Ranking Model
,”
Virtual Phys. Prototyping
,
8
(
3
), pp.
201
212
.10.1080/17452759.2013.830939
5.
Whadcock
,
I.
,
2013
,“
A Third Industrial Revolution
,” The Economist (online), accessed: Apr. 9, 2013, http://www.economist.com/node/21552901
6.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Bus. Horiz.
,
55
(
2
), pp.
155
162
.10.1016/j.bushor.2011.11.003
7.
Valero-Gomez
,
A.
,
Gonzalez-Gomez
,
J.
,
Gonzalez-Pacheco
,
V.
, and
Salichs
,
M. A.
,
2012
, “
Printable Creativity in Plastic Valley UC3M
,” IEEE Global Engineering Education Conference (
EDUCON
), Marrakech, Morocco, Apr. 17–2010.1109/EDUCON.2012.6201151.
8.
Gonzalez-Gomez
,
J.
,
Valero-Gomez
,
A.
,
Prieto-Moreno
,
A.
, and
Abderrahim
,
M.
,
2012
, “
A New Open Source 3D-Printable Mobile Robotic Platform for Education
,”
Advances in Autonomous Mini Robots
,
U.
Rückert
,
S.
Joaquin
, and
W.
Felix
, eds.,
Springer
,
Berlin
, pp.
49
62
.
9.
Schmidt
,
A.
,
Doring
,
T.
, and
Sylvester
,
A.
,
2011
, “
Changing How We Make and Deliver Smart Devices: When Can I Print Out My New Phone?
,”
IEEE Pervasive Comput.
,
10
(
4
), pp.
6
9
.10.1109/MPRV.2011.68
10.
Kim
,
N.-S.
, and
Han
,
K. N.
,
2010
, “
Future Direction of Direct Writing
,”
J. Appl. Phys.
,
108
(
10
), p.
102801
.10.1063/1.3510359
11.
Mancosu
,
R. D.
,
Quintero
,
J. A. Q.
, and
Azevedo
,
R. E. S.
,
2010
, “
Sintering, in Different Temperatures, of Traces of Silver Printed in Flexible Surfaces
,”
11th International Conference on Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Bordeaux, France, Apr. 26–28.10.1109/ESIME.2010.5464510
12.
Ko
,
S. H.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Luscombe
,
C. K.
,
Fréchet
,
J. M. J.
, and
Poulikakos
,
D.
,
2007
, “
All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles
,”
Nanotechnology
,
18
(
34
), p.
345202
.10.1088/0957-4484/18/34/345202
13.
Huang
,
D.
,
Liao
,
F.
,
Molesa
,
S.
,
Redinger
,
D.
, and
Subramanian
,
V.
,
2003
, “
Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics
,”
J. Electrochem. Soc.
,
150
(
7
), pp.
G412
G417
.10.1149/1.1582466
14.
Jang
,
S.
,
Seo
,
Y.
,
Choi
,
J.
,
Kim
,
T.
,
Cho
,
J.
,
Kim
,
S.
, and
Kim
,
D.
,
2010
, “
Sintering of Inkjet Printed Copper Nanoparticles for Flexible Electronics
,”
Scr. Mater.
,
62
(
5
), pp.
258
261
.10.1016/j.scriptamat.2009.11.011
15.
Li
,
Y.
,
Wu
,
Y.
, and
Ong
,
B. S.
,
2005
, “
Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics
,”
J. Am. Chem. Soc.
,
127
(
10
), pp.
3266
3267
.10.1021/ja043425k
16.
Russo
,
A.
,
Ahn
,
B. Y.
,
Adams
,
J. J.
,
Duoss
,
E. B.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Pen-On-Paper Flexible Electronics
,”
Adv. Mater.
,
23
(
30
), pp.
3426
3430
.10.1002/adma.201101328
17.
Hu
,
J
.,
2010
, “
Overview of Flexible Electronics From ITRI's Viewpoint
,”
28th VLSI Test Symposium
(
VTS
), Santa Cruz, CA, Apr. 19–22, pp.
84
10.1109/VTS.2010.5469608.
18.
Roberson
,
D.
,
MacDonald
,
E.
,
Church
,
K.
, and
Wicker
,
R.
,
2010
, “
Failure Investigation of Direct Write Pen Tips
,”
J. Failure Anal. Prev.
,
10
(
6
), pp.
504
507
.10.1007/s11668-010-9387-y
19.
Roberson
,
D. A.
,
Wicker
,
R. B.
, and
MacDonald
,
E.
,
2012
, “
Microstructural Characterization of Electrically Failed Conductive Traces Printed From Ag Nanoparticle Inks
,”
Mater. Lett.
,
76
, pp.
51
54
.10.1016/j.matlet.2012.02.032
20.
Hoffman
,
J.
,
Hwang
,
S.
,
Ortega
,
A.
,
Kim
,
N.-S.
, and
Moon
,
K.
,
2013
, “
The Standardization of Printable Materials and Direct Writing Systems
,”
ASME J. Electron. Packag.
,
135
(
1
), p.
011006
.10.1115/1.4023809
21.
Tobjörk
,
D.
,
Kaihovirta
,
N. J.
,
Mäkelä
,
T.
,
Pettersson
,
F. S.
, and
Österbacka
,
R.
,
2008
, “
All-Printed Low-Voltage Organic Transistors
,”
Org. Electron.
,
9
(
6
), pp.
931
935
.10.1016/j.orgel.2008.06.016
22.
Church
,
K.
,
MacDonald
,
E.
,
Clark
,
P.
,
Taylor
,
R.
,
Paul
,
D.
,
Stone
,
K.
,
Wilhelm
,
M.
,
Medina
,
F.
,
Lyke
,
J.
, and
Wicker
,
R.
,
2009
, “
Printed Electronic Processes for Flexible Hybrid Circuits and Antennas
,”
Flexible Electronics & Displays Conference and Exhibition
, Phoenix, AZ, Feb. 2–5.10.1109/FEDC.2009.5069282
23.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
.10.1108/13552541211212113
24.
Wicker
,
R. B.
, and
MacDonald
,
E. W.
,
2012
, “
Multi-Material, Multi-Technology Stereolithography
,”
Virtual Phys. Prototyping
,
7
(
3
), pp.
181
194
.10.1080/17452759.2012.721119
25.
Navarrete
,
M.
,
Lopes
,
A.
,
Acuna
,
J.
,
Estrada
,
R.
,
MacDonald
,
E.
,
Palmer
,
J.
, and
Wicker
,
R.
,
2007
, “
Integrated Layered Manufacturing of a Novel Wireless Motion Sensor System With GPS
,”
18th Annual Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 6–10, pp.
575
585
.http://sffsymposium.engr.utexas.edu/Manuscripts/2007/2007-49-Wicker.pdf
26.
Castillo
,
S.
,
Muse
,
D.
,
Medina
,
F.
,
MacDonald.
,
Wicker
,
R.
,
2009
, “
Electronics Integration in Conformal Substrates With Additive Layered Manufacturing
,”
20th Annual Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 3–5, pp.
730
737
.http://sffsymposium.engr.utexas.edu/Manuscripts/2009/2009-63-Castillo.pdf
27.
DeNava
,
E.
,
Navarrete
,
M.
,
Lopes
,
A.
,
Alawneh
,
M.
,
Contreras
,
M.
,
Muse
,
D.
,
Castillo
,
S.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2008
, “
Three-Dimensional Off-Axis Component Placement and Routing for Electronics Integration Using Solid Freeform Fabrication
,”
19th Annual Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 4–6, pp.
362
369
.http://sffsymposium.engr.utexas.edu/Manuscripts/2008/2008-33-DeNava.pdf
28.
Roberson
,
D. A.
,
Wicker
,
R. B.
,
Murr
,
L. E.
,
Church
,
K.
, and
MacDonald
,
E.
,
2011
, “
Microstructural and Process Characterization of Conductive Traces Printed From Ag Particulate Inks
,”
Materials
,
4
(
6
), pp.
963
979
.10.3390/ma4060963
29.
Greer
,
J. R.
, and
Street
,
R. A.
,
2007
, “
Thermal Cure Effects on Electrical Performance of Nanoparticle Silver Inks
,”
Acta Mater.
,
55
(
18
), pp.
6345
6349
.10.1016/j.actamat.2007.07.040
30.
Saraf
,
R. F.
,
Roldan
,
J. M.
,
Jagannathan
,
R.
,
Sambucetti
,
C.
,
Marino
,
J.
, and
Jahnes
,
C.
,
1995
, “
Polymer/Metal Composite for Interconnection Technology
,”
45th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 21–24, pp.
1051
1053
.10.1109/ECTC.1995.517820
31.
Kim
,
D.
, and
Moon
,
J.
,
2005
, “
Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics
,”
Electrochem. Solid-State Lett.
,
8
(
11
), pp.
J30
J33
.10.1149/1.2073670
32.
DSM Somos®, ProtoTherm™ 12120 Product Data Sheet, 2012, DSM Somos®, Elgin, IL.
33.
DSM Somos® WaterShed™ 11120 Product Data Sheet 2012, DSM Somos®, Elgin, IL.
34.
Lopes
,
A. J.
,
Lee
,
I. H.
,
MacDonald
,
E.
,
Quintana
,
R.
, and
Wicker
,
R.
,
2014
, “
Laser Curing of Silver-Based Conductive Inks for In Situ 3D Structural Electronics Fabrication in Stereolithography
,”
J. Mater. Process. Technol.
,
214
(
9
), pp.
1935
1945
.10.1016/j.jmatprotec.2014.04.009
35.
Choi
,
J. H.
,
Ryu
,
K.
,
Park
,
K.
, and
Moon
,
S.-J.
,
2015
, “
Thermal Conductivity Estimation of Inkjet-Printed Silver Nanoparticle Ink During Continuous Wave Laser Sintering
,”
Int. J. Heat Mass Transfer
,
85
, pp.
904
909
.10.1016/j.ijheatmasstransfer.2015.01.056
36.
Roberson
,
D. A.
,
2012
, “
A Novel Method for the Curing of Metal Particle Loaded Conductive Inks and Pastes
,” Ph.D. dissertation, Materials Science and Engineering, The University of Texas at El Paso, El Paso, TX.
37.
Roberson
,
D. A.
,
Wicker
,
R. B.
, and
MacDonald
,
E.
,
2012
, “
Ohmic Curing of Printed Silver Conductive Traces
,”
J. Electron. Mater.
,
41
(
9
), pp.
2553
2566
.10.1007/s11664-012-2140-4
38.
Allen
,
M. L.
,
Aronniemi
,
M.
,
Mattila
,
T.
,
Alastalo
,
A.
,
Ojanperä
,
K.
,
Suhonen
,
M.
, and
Seppä
,
H.
,
2008
, “
Electrical Sintering of Nanoparticle Structures
,”
Nanotechnology
,
19
(
17
), p.
175201
.10.1088/0957-4484/19/17/175201
39.
Lopes
,
A. J.
,
Navarrete
,
M.
,
Medina
,
F.
,
Palmer
,
J. A.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2006
, “
Expanding Rapid Prototyping for Electronic Systems Integration of Arbitrary Form
,”
17th Annual Solid Freeform Fabrication Symposium
, University of Texas at Austin, Austin, TX, Aug. 14–16, pp.
644
655
.http://sffsymposium.engr.utexas.edu/Manuscripts/2006/2006-56-Lopes.pdf
40.
Olivas
,
R. I.
,
2011
, “
Conformal Electronics Manufacturing Through Additive Manufacturing and Micro-Dispensing
,” M.S. thesis, Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX.
You do not currently have access to this content.