A numerical investigation was carried out to characterize the thermal performance of finned metal foam heat sinks subject to an impinging air flow. The main objective of the study was to quantify the effects of all relevant configurational parameters (channel length, channel width, fin thickness, and fin height) of the heat sink upon the thermal performance. Open-cell aluminum foam having fixed porosity of 0.9118 and fixed pore density of five pores per inch (PPI) was used in the study. A previously validated model based on the porous medium approach was employed for the numerical simulation. Various simulation cases for different combinations of channel parameters were carried out to obtain the Nusselt number correlation. Based on the inviscid impinging flow, a pressure drop correlation was derived for impinging flow in finned metal foam heat sinks. By using these correlations, the thermal performance of finned metal foam heat sinks was compared with the conventional plate-fin heat sinks. It was demonstrated that the finned metal foam heat sinks outperformed the plate-fin heat sinks on the basis of given weight or given pumping power.

References

References
1.
Nakayama
,
W.
,
2013
, “
Heat in Computers: Applied Heat Transfer in Information Technology
,”
ASME J. Heat Transfer
,
136
(
1
), p.
013001
.10.1115/1.4025377
2.
Ranjan
,
R.
,
Turney
,
J. E.
,
Lents
,
C. E.
, and
Faustino
,
V. H.
,
2014
, “
Design of Thermoelectric Modules for High Heat Flux Cooling
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041001
.10.1115/1.4028118
3.
Ellsworth
,
J. M. J.
,
Zoodsma
,
R. J.
,
Cascio
,
F.
, and
Behrendt
,
E.
,
2014
, “
Design and Control of the IBM Power 775 Supercomputer Water Conditioning Unit
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041009
.10.1115/1.4028119
4.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2014
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.10.1115/1.4028890
5.
Geb
,
D.
, and
Catton
,
I.
,
2013
, “
Nonlocal Modeling and Swarm-Based Design of Heat Sinks
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011401
.10.1115/1.4025300
6.
Biber
,
C. R.
,
1997
, “
Pressure Drop and Heat Transfer in an Isothermal Channel With Impinging Flow
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part A
,
20
(
4
), pp.
458
462
.10.1109/95.650935
7.
Saini
,
M.
, and
Webb
,
R. L.
,
2002
, “
Validation of Models for Air Cooled Plane Fin Heat Sinks Used in Computer Cooling
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, (
ITHERM 2002
), San Diego, CA, June 1, pp.
243
250
.10.1109/ITHERM.2002.1012464
8.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2005
, “
Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
412
418
.10.1115/1.2351906
9.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2006
, “
Pressure Drop of Impingement Air Cooled Plate Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
129
(
2
), pp.
190
194
.10.1115/1.2721094
10.
Kondo
,
Y.
,
Behnia
,
M.
,
Nakayama
,
W.
, and
Matsushima
,
H.
,
1998
, “
Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages
,”
ASME J. Electron. Packag.
,
120
(
3
), pp.
259
266
.10.1115/1.2792631
11.
Kim
,
D. K.
,
Kim
,
S. J.
, and
Bae
,
J. K.
,
2009
, “
Comparison of Thermal Performances of Plate-Fin and Pin-Fin Heat Sinks Subject to an Impinging Flow
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3510
3517
.10.1016/j.ijheatmasstransfer.2009.02.041
12.
Jang
,
S. P.
, and
Kim
,
S. J.
,
2005
, “
Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
770
779
.10.1115/1.1924628
13.
Do
,
K. H.
,
Kim
,
T. H.
, and
Kim
,
S. J.
,
2010
, “
Analytical and Experimental Investigations on Fluid Flow and Thermal Characteristics of a Plate-Fin Heat Sink Subject to a Uniformly Impinging Jet
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2318
2323
.10.1016/j.ijheatmasstransfer.2009.12.049
14.
Hwang
,
G. J.
,
Wu
,
C. C.
, and
Chao
,
C. H.
,
1995
, “
Investigation of Non-Darcian Forced-Convection in An Asymmetrically Heated Sintered Porous Channel
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
725
732
.10.1115/1.2822636
15.
Kuo
,
S. M.
, and
Tien
,
C. L.
,
1988
, “
Heat Transfer Augmentation in a Foam-Material Filled Duct With Discrete Heat Sources
,”
Intersociety Conference on IEEE Thermal Phenomena in the Fabrication and Operation of Electronic Components (I-THERM ‘88)
,
Los Angeles
,
CA
, May 11–13, pp.
87
91
.
16.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effects of Thermal Dispersion on Forced-Convection in Fibrous Media
”,
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.10.1016/0017-9310(88)90013-0
17.
Lu
,
T. J.
,
2002
, “
Ultralight Porous Metals: From Fundamentals to Applications
,”
Acta Mech. Sin.
,
18
(
5
), pp.
457
479
.10.1007/BF02486571
18.
Giuliano
,
M. R.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Experimental Study of an Air-Cooled Thermal Management System for High Capacity Lithium-Titanate Batteries
,”
J. Power Sources
,
216
, pp.
345
352
.10.1016/j.jpowsour.2012.05.074
19.
Mavridou
,
S.
,
Mavropoulos
,
G. C.
,
Bouris
,
D.
,
Hountalas
,
D. T.
, and
Bergeles
,
G.
,
2010
, “
Comparative Design Study of a Diesel Exhaust Gas Heat Exchanger for Truck Applications With Conventional and State of the Art Heat Transfer Enhancements
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
935
947
.10.1016/j.applthermaleng.2010.01.003
20.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
21.
Ejlali
,
A.
,
Ejlali
,
A.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2009
, “
Application of High Porosity Metal Foams as Air-Cooled Heat Exchangers to High Heat Load Removal Systems
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
674
679
.10.1016/j.icheatmasstransfer.2009.03.001
22.
Marafie
,
A.
,
Khanafer
,
K.
,
Al-Azmi
,
B.
, and
Vafai
,
K.
,
2008
, “
Non-Darcian Effects on the Mixed Convection Heat Transfer in a Metallic Porous Block With a Confined Slot Jet
,”
Numer. Heat Transfer, Part A
,
54
(
7
), pp.
665
685
.10.1080/10407780802339064
23.
Kuang
,
J. J.
,
Kim
,
T.
,
Xu
,
M. L.
, and
Lu
,
T. J.
,
2012
, “
Ultralightweight Compact Heat Sinks With Metal Foams Under Axial Fan Flow Impingement
,”
Heat Transfer Eng.
,
33
(
7
), pp.
642
650
.10.1080/01457632.2012.630270
24.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
530
537
.10.1115/1.2188461
25.
Rallabandi
,
A. P.
,
Rhee
,
D. H.
,
Gao
,
Z. H.
, and
Han
,
J. C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4663
4671
.10.1016/j.ijheatmasstransfer.2010.06.027
26.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
27.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.10.1115/1.2229225
28.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
29.
Krishnan
,
S.
,
Hernon
,
T. D.
,
Hodes
,
M.
,
Mullins
,
J.
, and
Lyons
,
A. M.
,
2012
, “
Design of Complex Structured Monolithic Heat Sinks for Enhanced Air Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
2
), pp.
266
277
.10.1109/TCPMT.2011.2175448
30.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
31.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
32.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat-Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.10.1016/0017-9310(81)90027-2
33.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, Sect. 5.5-2, p.
102
.
34.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
,
1980
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
35.
Feng
,
S. S.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2013
, “
Numerical Investigation of Forced Convection in Pin/Plate-Fin Heat Sinks Heated by Impinging Jet Using Porous Medium Approach
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
1
), pp.
88
107
.10.1108/09615531311289123
36.
Feng
,
S. S.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2010
, “
A Semi-Empirical Heat Transfer Model for Forced Convection in Pin-Fin Heat Sinks Subjected to Non-Uniform Heating
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121702
.10.1115/1.4002285
37.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
A Semi-Empirical Model for Estimating Permeability and Inertial Coefficient of Pin-Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3140
3150
.10.1016/j.ijheatmasstransfer.2005.02.016
38.
Mills
,
A. F.
,
1995
,
Basic Heat and Mass Transfer
,
Richard D. Irwin, Inc.
,
Chicago
.
39.
Zhao
,
C. Y.
, and
Lu
,
T. J.
,
2002
, “
Analysis of Microchannel Heat Sinks for Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4857
4869
.10.1016/S0017-9310(02)00180-1
You do not currently have access to this content.