The extrapolation and generalization of accelerated test results for lead free solder joints require the identification of a damage function that can be counted on to apply beyond the region of the test. Individual ball grid array (BGA) scale Sn3Ag0.5Cu (SAC305) solder joints were subjected to isothermal shear fatigue testing at room temperature and 65 °C. The resulting mechanical response degradation and crack behavior, including strain hardening, crack initiation, and propagation, were correlated with the inelastic work and effective stiffness derived from load–displacement hysteresis loops. Crack initiation was found to scale with the accumulated work, independently of cycling amplitude and strain rate. The subsequent damage rate varied slightly with amplitude.

References

References
1.
Mattila
,
T.
,
2005
, “
Reliability of High–Density Lead–Free Solder Interconnections Under Thermal Cycling and Mechanical Shock Loading
,” Ph.D. dissertation, Helsinki University of Technology, Helsinki, Finland.
2.
Mayyas
,
A.
,
Yin
,
L.
, and
Borgesen
,
P.
,
2009
, “
Recrystallization of Lead Free Solder Joints: Confounding The Interpretation of Accelerated Thermal Cycling Results?
,”
ASME
Paper No. IMECE2009-12749.10.1115/IMECE2009-12749
3.
Mayyas
,
A.
,
Qasaimeh
,
A.
,
Borgesen
,
P.
, and
Meilunas
,
M.
,
2014
, “
Effects of Latent Damage of Recrystallization on Lead Free Solder Joints
,”
Microelectron. Reliab.
,
54
(
2
), pp.
447
456
.10.1016/j.microrel.2013.10.006
4.
Andersson
,
C.
,
Lai
,
Z.
,
Liu
,
J.
,
Jiang
,
H.
, and
Yu
,
Y.
,
2005
, “
Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders
,”
Mater. Sci. Eng.
, A
394
(
1
), pp.
20
27
.10.1016/j.msea.2004.10.043
5.
Zhao
,
J.
,
Mutoh
,
Y.
,
Miyashita
,
Y.
, and
Mannan
,
S.
,
2002
, “
Fatigue Crack-Growth Behavior of Sn–Ag–Cu and Sn–Ag–Cu–Bi Lead-Free Solders
,”
J. Electron. Mater.
,
31
(
8
), pp.
879
886
.10.1007/s11664-002-0199-z
6.
Mutoh
,
Y.
,
Zhao
,
J.
,
Miyashita
,
Y.
, and
Kanchanomai
,
C.
,
2002
, “
Fatigue Crack Growth Behaviour of Lead-Containing and Lead-Free Solders
,”
Soldering Surf. Mount Technol.
,
14
(
3
), pp.
37
45
.10.1108/09540910210444719
7.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2002
, “
Low Cycle Fatigue and Fatigue Crack Growth Behaviour of Sn–Ag Eutectic Solder
,”
Soldering Surf. Mount Technol.
,
14
(
3
), pp.
30
36
.10.1108/09540910210444700
8.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2007
, “
Fatigue Crack Initiation and Growth in Solder Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
5
), pp.
443
457
.10.1111/j.1460-2695.2006.01088.x
9.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2002
, “
Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5 Sn/3.5 Ag
,”
J. Electronic Mater.
,
31
(
2
), pp.
142
151
.10.1007/s11664-002-0161-0
10.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2003
, “
Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5 Sn–3.5 Ag
,”
Mater. Sci. Eng.
, A
345
(
1
), pp.
90
98
.10.1016/S0921-5093(02)00461-6
11.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2004
, “
Low-Cycle Fatigue Prediction Model for Pb-Free Solder 96.5 Sn-3.5 Ag
,”
J. Electron. Mater.
,
33
(
4
), pp.
329
333
.10.1007/s11664-004-0139-1
12.
Pang
,
J. H.
,
Xiong
,
B. S.
, and
Low
,
T. H.
,
2004
, “
Low Cycle Fatigue Models for Lead-Free Solders
,”
Thin Solid Films
,
462
, pp.
408
412
.10.1016/j.tsf.2004.05.037
13.
Shang
,
J.
,
Zeng
,
Q.
,
Zhang
,
L.
, and
Zhu
,
Q.
,
2007
, “
Mechanical Fatigue of Sn-Rich Pb-Free Solder Alloys
,”
J. Mater. Sci.: Mater. Electron.
,
18
(
1–3
), pp.
211
227
.10.1007/s10854-006-9027-1
14.
Darveaux
,
R.
,
2002
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
147
154
.10.1115/1.1413764
15.
Letcher
,
T.
,
Shen
,
M. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Critical Fatigue Life Prediction Method for AL6061‐T6
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
9
), pp.
861
870
.10.1111/j.1460-2695.2011.01669.x
16.
Tchankov
,
D. S.
, and
Vesselinov
,
K. V.
,
1998
, “
Fatigue Life Prediction Under Random Loading Using Total Hysteresis Energy
,”
Int. J. Pressure Vessels Piping
,
75
(
13
), pp.
955
960
.10.1016/S0308-0161(98)00100-8
17.
Rasband
,
W. S.
,
1997
, imagej, U. S. National Institutes of Health, Bethesda, MD, accessed Nov. 2014, http://imagej.nih.gov/ij/
18.
Borgesen
,
P.
,
Bieler
,
T.
,
Lehman
,
L. P.
, and
Cotts
,
E. J.
,
2007
, “
Pb-Free Solder: New Materials Considerations for Microelectronics Processing
,”
MRS Bull.
,
32
(
04
), pp.
360
365
.10.1557/mrs2007.236
19.
Qasaimeh
,
A.
,
Jaradat
,
Y.
,
Wentlent
,
L.
,
Yang
,
L.
,
Yin
,
L.
,
Arfaei
,
B.
, and
Borgesen
,
P.
,
2011
, “
Recrystallization Behavior of Lead Free and Lead Containing Solder in Cycling
,” IEEE 61st Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
1775
1781
.10.1109/ECTC.2011.5898753
20.
Rittel
,
D.
,
Kidane
,
A. A.
,
Alkhader
,
M.
,
Venkert
,
A.
,
Landau
,
P.
, and
Ravichandran
,
G.
,
2012
, “
On the Dynamically Stored Energy of Cold Work in Pure Single Crystal and Polycrystalline Copper
,”
Acta Mater.
,
60
(
9
), pp.
3719
3728
.10.1016/j.actamat.2012.03.029
21.
Hamasha
,
S.
,
Jaradat
,
Y.
,
Qasaimeh
,
A.
,
Obaidat
,
M.
, and
Borgesen
,
P.
,
2014
, “
Assessment of Solder Joint Fatigue Life Under Realistic Service Conditions
,”
J. Electron. Mater.
,
43
(
12
), pp.
4472
4484
.10.1007/s11664-014-3436-3
22.
Hamasha
,
S.
,
Qasaimeh
,
A.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Correlation Between Solder Joint Fatigue Life and Accumulated Inelastic Energy Deposition (Work) in Isothermal Cycling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
(submitted).
You do not currently have access to this content.