The continued progress of micro-electronics often requires functionality that is spread across multiple chips. This need has led to the development of a variety of alternative chip-packaging technologies that offer increased speed and bandwidth, with lower losses, in an increasing number of interchip interconnects. One recent alternative is quilt packaging® (QP), which has already shown promise from a performance perspective. The geometry of QP is essentially lateral: large numbers of ultrawide-bandwidth interchip interconnects (superconnects) are made directly by nodules fabricated along the edges of adjacent chips. Metallurgical bonding of the nodules creates a system in the form of a “quilt” of separately manufactured chips. This new interconnect geometry is subject to stresses that are different from more conventional schemes. For example, the thermal stress that causes fatigue and lead to failure in ball grid arrays is essentially shear stress, whereas the most critical stresses in QP are tensile and compressive. This paper describes studies of fatigue failure in QP, with attention to critical high-stress regions previously identified by finite-element modeling. Nodules were fabricated on silicon chips, and both single and quilted chips were thermally cycled up to 1000 times over a range of − 55 °C to 125 °C. Scanning electron microscopy (SEM) was used to detect mechanical failure. Focused-ion-beam cross-sectioning was used to expose the critical interior interfaces of QP structures for SEM examination. QP superconnects were found to be robust under all the test conditions evaluated.

References

References
1.
ITRS
,
2009
, “
The International Technology Roadmap for Semiconductors
,”
Assembly and Packaging
,
Semiconductor Industry Association (SIA)
,
Washington, D.C.
, p.
27
.
2.
Kouzaev
,
G. A.
,
2012
,
Applications of Advanced Electromagnetics: Components and Systems
,
Springer
,
New York
, pp.
209
210
.
3.
Dorf
,
R. C.
,
1997
,
The Electrical Engineering Handbook
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
, pp.
851
853
.
4.
Bernstein
,
G. H.
,
Liu
,
Q.
,
Yan
,
M.
,
Sun
,
Z.
,
Kopp
,
D.
,
Porod
,
W.
,
Snider
,
G.
, and
Fay
,
P.
,
2007
, “
Quilt Packaging: High-Density, High-Speed Interchip Communications
,”
IEEE Trans. Adv. Packag.
,
30
(
4
), pp.
731
740
.10.1109/TADVP.2007.901643
5.
Liu
,
Q.
,
Fay
,
P.
, and
Bernstein
,
G. H.
,
2007
, “
A Novel Scheme for Wide Bandwidth Chip-to-Chip Communications
,”
Int. Microelectron. Packag. Soc.
,
4
(
1
), pp.
1
7
.
6.
Kulick
,
J. M.
, and
Bernstein
,
G. H.
,
2012
, “
Quilt Packaging: A Revolutionary and Flexible Approach to High-Performance System in Package
,”
Adv. Microelectron.
,
30
(
2
), pp.
12
16
.
7.
Burghartz
,
J. N.
,
2011
,
Ultra-Thin Chip Technology and Applications
,
Springer
,
New York
, pp.
47
49
.10.1007/978-1-4419-7276-7
8.
Fay
,
P.
,
Kopp
,
D.
,
Liang
,
C.
,
Kulick
,
J. M.
,
Khan
,
M.
, and
Bernstein
,
G. H.
,
2009
, “
Quilt Packaging of RF Systems With Ultrawide Bandwidths
,”
Proceedings of the IMAPS—Advanced Technology Workshop on RF and Microwave Packaging
,
San Diego
,
CA
, pp. 1–5.
9.
Kopp
,
D.
,
Khan
,
M. A.
,
Kulick
,
J. M.
,
Kriman
,
A. M.
,
Fay
,
P.
, and
Bernstein
,
G. H.
,
2010
, “
Quilt Packaging: Electrical and Thermal Performance Study
,”
Proceedings of the IMAPS International Conference and Exhibition on Device Packaging
,
Scottsdale
,
AZ
, Mar. 9–Mar. 12, pp. 1428–1432.
10.
Fay
,
P. J.
,
Kopp
,
D. J.
,
Lu
,
T.
,
Neal
,
D.
,
Bernstein
,
G. H.
, and
Kulick
,
J. M.
,
2014
Ultrawide-Bandwidth Chip-to-Chip Interconnects for III-V MMICs
,”
IEEE Microwave Wireless Compon. Lett.
,
24
(
1
), pp.
29
31
.10.1109/LMWC.2013.2288181
11.
Amalu
,
E. H.
, and
Ekere
,
N. N.
,
2012
, “
Damage of Lead-Free Solder Joints in Flip Chip Assemblies Subjected to High-Temperature Thermal Cycling
,”
Comput. Mater. Sci.
,
65
, pp.
470
484
.10.1016/j.commatsci.2012.08.005
12.
Dudek
,
R.
,
Döring
,
R.
, and
Michael
,
B.
,
2003
Reliability Prediction of Area Array Solder Joints
,”
ASME J. Electron. Packag.
,
125
(
4
), pp.
562
568
.10.1115/1.1604802
13.
Suhir
,
E.
,
2009
, “
Predictive Analytical Thermal Stress Modeling in Electronics and Photonics
,”
ASME Appl. Mech. Rev.
,
62
(
4
), p.
040801
.10.1115/1.3077136
14.
Tang
,
H.
, and
Basaran
,
C.
,
2003
, “
A Damage Mechanics-Based Fatigue Life Prediction Model for Solder Joints
,”
ASME J. Electron. Packag.
,
125
(
1
), pp.
120
125
.10.1115/1.1536171
15.
Tunga
,
K.
, and
Sitaraman
,
S. K.
,
2007
, “
An Expedient Experimental Technique for the Determination of Thermal Cycling Fatigue Life for BGA Package Solder Balls
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
427
433
.10.1115/1.2804091
16.
Khan
,
M. A.
,
Kulick
,
J. M.
,
Kopp
,
D.
,
Fay
,
P.
,
Kriman
,
A. M.
, and
Bernstein
,
G. H.
,
2013
, “
Design and Robustness of Quilt Packaging Superconnect
,”
J. Microelectron. Electron. Packag.
,
10
(
1
), pp.
8
14
.10.4071/imaps.358
17.
Kopp
,
D.
,
Khan
,
M. A.
,
Garvey
,
S.
,
Anderson
,
K.
,
Kulick
,
J.
,
Kriman
,
A.
,
Bernstein
,
G. H.
, and
Fay
,
P. J.
,
2010
, “
Quilt Packaging: A Robust Coplanar Chip-to-Chip Interconnect Offering Very High Bandwidth
,”
Proceedings of the CS MANTECH Conference
,
Portland
,
OR
, pp.
309
312
.
18.
Khan
,
M. A.
,
Kriman
,
A. M.
, and
Bernstein
,
G. H.
,
2010
, “
Thermal Modeling of Quilt Packaging Interconnects
,”
Proceedings of the 18th Biennial University/Government/Industry Micro/Nano Symposium
(
UGIM
),
West Lafayette
,
IN
, June 28–July 1, pp.
166
168
.10.1109/UGIM.2010.5508910
19.
Zheng
,
Q.
,
Kopp
,
D.
,
Khan
,
M. A.
,
Fay
,
P.
,
Kriman
,
A. M.
, and
Bernstein
,
G. H.
,
2014
, “
Investigation of Quilt Packaging Interchip Interconnect With Solder Paste
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
3
), pp.
400
407
.10.1109/TCPMT.2014.2301738
20.
JEDEC Solid State Technology Association
,
2009
,
Temperature Cycling
, Standard JESD22-A104D, Arlington, VA, p. 5.
21.
IPC-9701A
,
2006
,
Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
,
IPC
,
Bannockburn, IL
, p.
8
.
22.
Kwon
,
Y. W.
,
Luteran
,
A. M.
,
Didoszak
,
J. M.
, and
Kwon
,
A. S.
,
2012
, “
Study of Solder/Copper Interface Behavior Under Varying Strain Rates
,”
ASME J. Electron. Packag.
,
134
(
3
), p.
0310037
.10.1115/1.4006862
23.
Boyce
,
B. L.
,
Brewer
,
L. N.
,
Neilsen
,
M. K.
, and
Perricone
,
M. J.
,
2011
, “
On the Strain Rate- and Temperature-Dependent Tensile Behavior of Eutectic Sn–Pb Solder
,”
ASME J. Electron. Packag.
,
133
(
3
), p.
031009
.10.1115/1.4004846
24.
Bhate
,
D.
,
Chan
,
D.
, and
Subbarayan
,
G.
,
2008
, “
A Nonlinear Fracture Mechanics Approach to Modeling Fatigue Crack Growth in Solder Joints
,”
ASME J. Electron. Packag.
,
130
(
2
), p.
021003
.10.1115/1.2840057
25.
Guojun
,
H.
,
Tay
,
A. A. O.
,
Jing-En
,
L.
, and
Yiyi
,
M.
,
2010
, “
Numerical and Experimental Study of Interface Delamination in Flip Chip BGA Package
,”
ASME J. Electron. Packag.
,
132
(
1
), p.
011006
.10.1115/1.4001145
26.
Bernstein
,
G. H.
,
Carter
,
A.
, and
Joy
,
D. C.
,
2012
, “
Do SEII Electrons Really Degrade SEM Image Quality?
,”
Scanning
,
35
(
1
), pp.
1
6
.10.1002/sca.21027
27.
Khan
,
M. A.
,
2014
, “
Thermomechanical Effects in Quilt Packaging
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
28.
Lau
,
J. H.
,
2006
, “
Reliability of Lead-Free Solder Joints
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
297
301
.10.1115/1.2229234
29.
JEDEC Publication
,
2014
,
Foundry Process Qualification Guidelines
(
Wafer Fabrication Manufacturing Sites
), JEP001A, JEDEC Solid State Technology Association, Arlington, VA, p.
12
.
30.
Ghaffarian
,
R.
,
2000
, “Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies,”
ASME J. Electron. Packag.
,
122
(4), pp.
335
340
.10.1115/1.1289627
You do not currently have access to this content.