This study designed and produced a special microsolder specimen (Sn3.8Ag0.7Cu) to equalize current density under stressing. The specimen was generated to avoid temperature gradient and thermal migration. The inelastic deformation of the solder with electromigration (EM) alone was then measured with moiré interferometry. In addition, the EM-induced solder stress was evaluated using a finite element method (FEM). The precision of the FEM model was verified by comparing the simulated results with the experimental results with respect to EM-induced deformation. Findings indicated that the maximum spherical stress in the solder can reach 50 MPa. Moreover, the vacancy concentration is much higher on the cathode end than on the anode end. The simulation results can illustrate the failure mode of a solder and can therefore provide a basis for the comprehensive evaluation of solder reliability under EM.

References

References
1.
Tu
,
K. N.
,
2003
, “
Recent Advance on Electromigration in Very-Large-Scale-Integration of Interconnects
,”
J. Appl. Phys. Rev.
,
94
(
9
), pp.
5451
5473
.10.1063/1.1611263
2.
Chen
,
C.
,
Tong
,
H. M.
, and
Tu
,
K. N.
,
2010
, “
Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints
,”
Annu. Rev. Mater. Res.
,
40
(
8
), pp.
531
555
.10.1146/annurev.matsci.38.060407.130253
3.
Lai
,
Y.-S.
,
Chiu
,
Y.-T.
, and
Lee
,
C.-W.
,
2009
, “
Electromigration Reliability of 96.5Sn–3Ag–0.5Cu Flip-Chip Solder Joints With Au/Ni/Cu or Cu Substrate Pad Metallization
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021002
.10.1115/1.3103945
4.
Lu
,
H.
,
Yu
,
C.
,
Li
,
P.
, and
Chen
,
J.
,
2008
, “
Current Crowding and Its Effects on Electromigration and Interfacial Reaction in Lead-Free Solder Joints
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031008
.10.1115/1.2957322
5.
Su
,
F.
,
Mao
,
R. H.
,
Wang
,
G. Z.
,
Wang
,
X. Y.
, and
Pan
,
H. Y.
,
2011
, “
Creep Behavior of Sn–3.8Ag–0.7Cu Under the Effect of Electromigration: Experiments and Modelling
,”
Microelectron. Reliab.
,
51
(
5
), pp.
7357
7363
.10.1016/j.microrel.2011.01.010
6.
Li
,
Z.
, and
Dong
,
Y.
,
2007
, “
Electromigration-Induced Coble Creep in Polycrystalline Materials
,”
Appl. Phys. Lett.
,
91
(
19
), p.
191902
.10.1063/1.2805017
7.
Basaran
,
C.
, and
Lin
,
M.
,
2007
, “
Electromigration Induced Strain Field Simulations for Nanoelectronics Lead-Free Solder Joints
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4909
4924
.10.1016/j.ijsolstr.2006.12.011
8.
Chen
,
K.
,
Tamura
,
N.
,
Kunz
,
M.
,
Tu
,
K. N.
, and
Lai
,
Y.-S.
,
2009
, “
In Situ Measurement of Electromigration-Induced Transient Stress in Pb-Free Sn–Cu Solder Joints by Synchrotron Radiation Based X-Ray Polychromatic Microdiffraction
,”
J. Appl. Phys.
,
106
(
2
), p.
023502
.10.1063/1.3157196
9.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.10.1016/S0026-2714(99)00061-X
10.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
,
2003
, “
Thermomigration in Pb–Sn Solder Joints Under Joule Heating During Electric Current Stressing
,”
Appl. Phys. Lett.
,
82
(
7
), pp.
1045
1047
.10.1063/1.1554775
11.
Huang
,
A. T.
,
Gusak
,
A. M.
,
Tu
,
K. N.
, and
Lai
,
Y. S.
,
2006
, “
Thermomigration in SnPb Composite Flip Chip Solder Joints
,”
Appl. Phys. Lett.
,
88
(
14
), pp.
141911
141914
.10.1063/1.2192694
12.
Post
,
D.
,
Han
,
B.
, and
Ifju
,
P.
,
1990
,
High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials
,
Springer-Verlag
,
New York
.
13.
Blech
,
I. A.
,
1998
, “
Diffusional Back Flows During Electromigration
,”
Acta Mater.
,
46
(
11
), pp.
3717
3723
.10.1016/S1359-6454(97)00446-1
14.
Sarychev
,
M. E.
, and
Zhinikov
,
Yu. V.
,
1999
, “
General Model for Mechanical Stress Evolution During Electromigration
,”
J. Appl. Phys.
,
86
(
6
), pp.
3068
3075
.10.1063/1.371169
15.
Jing
,
J. P.
,
Liang
,
L.
, and
Meng
,
G.
,
2010
, “
Electromigration Simulation for Metal Lines
,”
ASME J. Electron. Packag.
,
132
(
1
), p.
011002
.10.1115/1.4000716
16.
Pang
,
J. H. L.
,
Xiong
,
B. S.
, and
Low
,
T. H.
,
2004
, “
Creep and Fatigue Characterization of Lead Free 95.5Sn-3.8Ag-0.7Cu Solder
,”
54th Electronic Components and Technology Conference
,
Las Vegas
,
NV
, June 1–4, Vol.
2
, pp.
1333
1337
.10.1109/ECTC.2004.1320285
17.
Choi
,
W. J.
,
Lee
,
T. Y.
,
Tu
,
K. N.
,
Tamura
,
N.
,
Celestre
,
R. S.
,
MacDowell
,
A. A.
,
Bong
,
Y. Y.
,
Nguyen
,
L.
, and
Sheng
,
G. T. T.
,
2002
, “
Structure and Kinetics of Sn Whisker Growth on Pb-Free Solder Finish
,” Lawrence Berkeley National Laboratory, Berkeley, CA, http://escholarship.org/uc/item/45m6m0d1
18.
Sobiech
,
M.
,
Welze
,
U.
,
Mittemeijer
,
E. J.
,
Hügel
,
W.
, and
Seekamp
,
A.
,
2008
, “
Driving Force for Sn Whisker Growth in the System Cu–Sn
,”
Appl. Phys. Lett.
,
93
(
1
), p.
011906
.10.1063/1.2953973
19.
Lee
,
B.-Z.
, and
Lee
,
D. N.
,
1998
, “
Spontaneous Growth Mechanism of Tin Whiskers
,”
Acta Mater.
,
46
(
10
), pp.
3701
3714
.10.1016/S1359-6454(98)00045-7
You do not currently have access to this content.