Seamless advancements in electronics industry resulted in high performance computing. These innovations lead to smaller electronics systems with higher heat fluxes than ever. However, shrinking nature of real estate for thermal management has created a need for more effective and compact cooling solutions. Novel cooling techniques have been of interest to solve the demand. One such technology that functions with the principle of creating vortex rings is called synthetic jets. These jets are mesoscale devices operating as zero-net-mass-flux principle by ingesting and ejection of high velocity working fluid from a single opening. These devices produce periodic jet streams, which may have peak velocities over 20 times greater than conventional, comparable size fan velocities. These jets enhance heat transfer in both natural and forced convection significantly over bare and extended surfaces. Recognizing the heat transfer physics over surfaces require a fundamental understanding of the flow physics caused by microfluid motion. A comprehensive computational and experimental study has been performed to understand the flow physics of a synthetic jet. Computational study has been performed via FLUENT commercial software, while the experimental study has been performed by using laser Doppler anemometry (LDA). Since synthetic jets are typical sine-wave excited between 20 and 60 V range, they have an orifice peak velocity of over 60 m/s, resulting in a Reynolds number of over 2000. Computational fluid dynamics (CFD) predictions on the vortex dipole location fall within 10% of the experimental measurement uncertainty band.

References

References
1.
Grimes
,
R.
,
Davies
,
M.
,
Punch
,
J.
,
Dalton
,
T.
, and
Cole
,
R.
,
2000
, “
Modeling Electronic Cooling Axial Fan Flows
,”
ASME J. Electron. Packag.
,
123
(
2
), pp.
112
119
.10.1115/1.1339821
2.
Stafford
,
J.
, and
Fortune
,
F.
,
2014
, “
Investigation of Multiple Miniature Axial Fan Cooling Solutions and Thermal Modeling Approaches
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011008
.10.1115/1.4026351
3.
Petroski
,
J.
,
Arik
,
M.
, and
Gursoy
,
M.
,
2008
, “
Piezoelectric Fans: Heat Transfer Enhancements or Electronics Cooling
,”
ASME
Paper No. HT-2008-56405. 10.1115/HT2008-56405
4.
Go
,
D.
,
Garimella
,
S. V.
,
Fisher
,
T.
, and
Mongia
,
R.
,
2007
, “
Ionic Winds for Locally Enhanced Cooling
,”
J. Appl. Phys.
,
102
, p.
053302
.10.1063/1.2776164
5.
Arik
,
M.
,
2008
, “
Local Heat Transfer Coefficients of a High Frequency Synthetic Jets During Impingement Cooling Over Flat Surfaces
,”
Heat Transfer Eng.
,
29
(
9
), pp.
763
773
.10.1080/01457630802053769
6.
Mahalingam
,
R.
, and
Glezer
,
A.
,
2004
, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
ASME J. Electron. Packag.
,
127
(
2
), pp.
172
177
.10.1115/1.1869509
7.
Gutmark
,
E.
,
Yassour
,
Y.
, and
Wolfshtein
,
M.
,
1982
, “
Acoustic Enhancement of Heat Transfer in Plane Channels
,”
Proceedings of the Seventh International Heat Transfer Conference
, Munich, Germany, Sept. 6–10, pp.
441
445
.
8.
Yassour
,
Y.
,
Stricker
,
J.
, and
Wolfshtein
,
M.
,
1986
, “
Heat Transfer From a Pulsating Jet
,”
Proceedings of the 8th International Conference
, San Francisco, CA, Aug. 17–22, Vol.
3
, pp.
1183
1186
.
9.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
, and
Saddoughi
,
S.
,
2004
, “
Micro Fluidic Jets for Thermal Management of Electronics
,”
ASME
Paper No. FED F-346. 10.1115/HT-FED2004-56782
10.
Mittal
,
R.
, and
Rampunggoon
,
P.
,
2002
, “
On Virtual Aero-Shaping Effect of Synthetic Jets
,”
Phys. Fluids
,
14
(
4
), pp.
1533
1536
.10.1063/1.1453470
11.
Lee
,
C. Y.
, and
Glodstein
,
D. B.
,
2001
, “
DNS of Micro Jets for Turbulent Boundary Layer Control
,”
AIAA
Paper No. 2001-1013.10.2514/6.2001-1013
12.
Mahalingam
,
R.
, and
Glezer
,
A.
,
2005
, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
ASME J. Electron. Packag.
,
127
(
2
), pp.
172
177
.10.1115/1.1869509
13.
Erbas
,
N.
,
Koklu
,
M.
, and
Baysal
,
O.
,
2005
, “
Synthetic Jets for Thermal Management of Microelectronic Chips
,”
ASME
Paper No. IMECE 2005-81419. 10.1115/IMECE2005-81419
14.
Minichiello
,
A.
,
Glezer
,
A.
,
Hartley
,
J. G.
, and
Black
,
W. Z.
,
1997
, “
Thermal Management of Sealed Electronic Enclosures Using Synthetic Jet Technology
,” Advances in Electronic Packaging, Proceedings of the Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference, INTERpack '97, EEP-Vol. 19–2, pp.
1809
1812
.
15.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
,
Wetzel
,
T.
, and
Saddoughi
,
S.
,
2005
, “
Advanced Localized Air Cooling With Synthetic Jets
,”
ASME J. Electron. Packag.
,
127
, pp.
503
511
.10.1115/1.2065727
16.
Garg
,
J.
,
Arik
,
M.
, and
Weaver
,
S.
,
2005
, “
Impingement Air Cooling With Synthetic Jets Over Small and Large Heated Surfaces
,”
ASME
Paper No. INTERPACK2005-73211. 10.1115/IPACK2005-73211
17.
Garg
,
J.
,
Arik
,
M.
,
Bar-Cohen Wolf
,
A.
,
Vukasinovic
,
R. B.
,
Hartley
,
J. G.
, and
Glezer
,
A.
,
2002
, “
Synthetic Jet Enhancement of Natural Convection and Pool Boiling in a Dielectric Liquid
,”
International Heat Transfer Conference
, Grenoble, France, Aug. 18–23
18.
Seeley
,
C. E.
,
Arik
,
M.
,
Hedeen
,
R.
,
Utturkar
,
Y.
,
Wetzel
,
T.
, and
Shih
,
M.
,
2006
, “
Coupled Acoustic and Heat Transfer Modeling of a Synthetic Jet
,”
47th
AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Newport, RI, May 1–4, pp.
1
13
. 10.2514/6.2006-1879
19.
Utturkar
,
Y.
,
Arik
,
M.
, and
Gursoy
,
M.
,
2006
, “
An Experimental and Computational Sensitivity Analysis of Synthetic Jet Cooling Performance
,”
ASME
Paper No. IMECE2006-13743.10.1115/IMECE2006-13743
20.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
,
2006
, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proceedings of the
IEEE
94:88, pp.
1549
1570
.10.1109/JPROC.2006.879791
21.
Arik
,
M.
,
2007
, “
An Investigation into Feasibility of Impingement Heat Transfer and Acoustic Abatement of Meso Scale Synthetic Jets
,”
J. Applied Therm. Eng.
,
27
(
8–9
), pp.
1483
1494
.10.1016/j.applthermaleng.2006.09.027
22.
Arik
,
M.
,
Petroski
,
J.
,
Bar-Cohen
,
A.
, and
Demiroglu
,
M.
,
2007
, “
Energy Efficiency of Low Form Factor Cooling Devices
,”
ASME
Paper No. IMECE2007-41275. 10.1115/IMECE2007-41275
23.
Arik
,
M.
,
Utturkar
,
Y.
, and
Gursoy
,
M.
,
2007
, “
Interaction of Synthetic Jet Cooling Performance With Gravity and Buoyancy Driven Flows
,”
ASME
Paper No. IPACK2007-33188. 10.1115/IPACK2007-33188
24.
Mahalingam
,
R.
, and
Glezer
,
A.
,
2005
, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
ASME J. Electron. Packag.
,
127
(
2
), pp.
172
177
.10.1115/1.1869509
25.
Utturkar
,
Y.
,
Arik
,
M.
,
Seeley
,
C.
, and
Gursoy
,
M.
,
2008
, “
An Experimental and Computational Heat Transfer Study of Pulsating Jets
,”
ASME J. Heat Transfer
,
130
(
6
), p.
062201
10.1115/1.2891158
26.
Persoons
,
T.
, and
O'Donovan
,
S. T.
,
2007
, “
A Pressure-Based Estimate of Synthetic Jet Velocity
,”
Phys. Fluids
,
19
, p.
128104
.10.1063/1.2823560
27.
Persoons
,
T.
,
McGuinn
,
A.
, and,
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3900
3908
.10.1016/j.ijheatmasstransfer.2011.04.037
28.
Trávníček
,
Z.
,
Němcová
,
L.
,
Kordík
,
J.
,
Tesař
,
V.
, and
Kopecký
,
V.
,
2012
, “
Axisymmetric Impinging Jet Excited by a Synthetic Jet System
,”
Int. J. Heat Mass Transfer
,
55
(
4
),pp.
1279
1290
.10.1016/j.ijheatmasstransfer.2011.09.015
29.
Jabbal
,
M.
,
Wu
,
J.
, and
Zhong
,
J.
,
2006
, “
The Performance of Round Synthetic Jets in Quiescent Flow
,”
Aeronaut. J.
,
110
(
1108
), pp.
385
393
.
You do not currently have access to this content.