A new design for an electro-osmotic flow (EOF) driven micropump was fabricated. Considering thermal management applications, three different types of micropumps were tested using multiple liquids. The micropumps were fabricated from a combination of materials, which included: silicon-polydimethylsiloxane (Si-PDMS), Glass-PDMS, or PDMS-PDMS. The flow rates of the micropumps were experimentally and numerically assessed. Different combinations of materials and liquids resulted in variable values of zeta-potential. The ranges of zeta-potential for Si-PDMS, Glass-PDMS, and PDMS-PDMS were −42.5–−50.7 mV, −76.0–−88.2 mV, and −76.0–−103.0 mV, respectively. The flow rates of the micropumps were proportional to their zeta-potential values. In particular, flow rate values were found to be linearly proportional to the applied voltages below 500 V. A maximum flow rate of 75.9 μL/min was achieved for the Glass-PDMS micropump at 1 kV. At higher voltages nonlinearity and reduction in flow rate occurred due to Joule heating and the axial electro-osmotic current leakage through the silicon substrate. The fabricated micropumps could deliver flow rates, which were orders of magnitude higher compared to the previously reported values for similar size micropumps. It is expected that such an increase in flow rate, particularly in the case of the Si-PDMS micropump, would lead to enhanced heat transfer for microchip cooling applications as well as for applications involving micrototal analysis systems (μTAS).

References

References
1.
Probstein
,
R.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
,
Wiley
,
Hoboken, NJ
, Chap. VI.
2.
Iverson
,
B. D.
, and
Garimella
,
S. V.
,
2008
, “
Recent Advances in Microscale Pumping Technologies: A Review and Evaluation
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
145
174
.10.1007/s10404-008-0266-8
3.
Chen
,
C.
, and
Santiago
,
J.
,
2002
, “
A Planar Electroosmotic Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
672
683
.10.1109/JMEMS.2002.805055
4.
Chujo
,
H.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2003
, “
A High Flow Rate Electro-Osmotic Pump With Small Channels in Parallel
,”
IEEE 16th Annual International Conference on Micro Electro Mechanical Systems
(
MEMS-03
),
Kyoto, Japan
, Jan. 19–23, pp.
351
354
.10.1109/MEMSYS.2003.1189758
5.
Chen
,
L.
,
Wang
,
H.
,
Ma
,
J.
,
Wang
,
C.
, and
Guan
,
Y.
,
2005
, “
Fabrication and Characterization of a Multi-Stage Electroosmotic Pump for Liquid Delivery
,”
Sens. Actuators, B
,
104
(
1
), pp.
117
123
.10.1016/j.snb.2004.05.013
6.
Seibel
,
K.
,
Schöler
,
L.
,
Schäfer
,
H.
, and
Böhm
,
M.
,
2008
, “
A Programmable Planar Electroosmotic Micropump for Lab-on-a-Chip Applications
,”
J. Micromech. Microeng.
,
18
(2), p.
025008
.10.1088/0960-1317/18/2/025008
7.
Zeng
,
S.
,
Chen
,
C. H.
,
Mikkelsen
,
J. C.
, and
Santiago
,
J. G.
,
2001
, “
Fabrication and Characterization of Electroosmotic Micropumps
,”
Sens. Actuators, B
,
79
(
2–3
), pp.
107
114
.10.1016/S0925-4005(01)00855-3
8.
Takamura
,
Y.
,
Onoda
,
H.
,
Inokuchi
,
H.
,
Adachi
,
S.
,
Oki
,
A.
, and
Horiike
,
Y.
,
2003
, “
Low‐Voltage Electroosmosis Pump for Stand‐Alone Microfluidics Devices
,”
Electrophoresis
,
24
(
1–2
), pp.
185
192
.10.1002/elps.200390012
9.
Jahanshahi
,
A.
,
Axisa
,
F.
, and
Vanfleteren
,
J.
,
2012
, “
Fabrication of a Biocompatible Flexible Electroosmosis Micropump
,”
Microfluid. Nanofluid.
,
12
(
5
), pp.
771
777
.10.1007/s10404-011-0905-3
10.
Harms
,
T.
,
Kazmierczak
,
M.
, and
Gerner
,
F.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.10.1016/S0142-727X(98)10055-3
11.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2011
, “
Assessment of an Active-Cooling Micro-Channel Heat Sink Device, Using Electro-Osmotic Flow
,”
Int. J. Heat Mass Transfer
,
54
(
21
), pp.
4560
4569
.10.1016/j.ijheatmasstransfer.2011.06.022
12.
Laser
,
D. J.
,
Myers
,
A. M.
,
Yao
,
S. H.
,
Bell
,
K. F.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2003
, “
Silicon Electroosmotic Micropumps for Integrated Circuit Thermal Management
,”
12th International Conference on Solid State Sensors, Actuators and Microsystem
,
Boston, MA
, June 8–12, Vol.
1
, pp.
151
154
.
13.
Jung
,
J. Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
,
2009
, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1
), pp.
466
472
.10.1016/j.ijheatmasstransfer.2008.03.033
14.
Eng
,
P.
,
Nithiarasu
,
P.
, and
Guy
,
O.
,
2010
, “
An Experimental Study on an Electro-Osmotic Flow-Based Silicon Heat Spreader
,”
Microfluid. Nanofluid.
,
9
(
4–5
), pp.
787
795
.10.1007/s10404-010-0594-3
15.
Zhang
,
L.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2002
, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
,
11
(
1
), pp.
12
19
.10.1109/84.982858
16.
Sze
,
A.
,
Erickson
,
D.
,
Ren
,
L. Q.
, and
Li
,
D. Q.
,
2003
, “
Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current-Time Relationship in Electroosmotic Flow
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
402
410
.10.1016/S0021-9797(03)00142-5
17.
Jiang
,
L. N.
,
Mikkelsen
,
J.
,
Koo
,
J. M.
,
Huber
,
D.
,
Yao
,
S. H.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Comp. Packag. Technol.
,
25
(
3
), pp.
347
355
.10.1109/TCAPT.2002.800599
18.
ESI, 2006, “CFD-ACE+ User Manual V2006,” ESI Group, Huntsville, AL.
19.
ASTM
,
1983
, “
Standard Specification for Reagent Water
,”
ASTM International
,
West Conshohocken, PA
, Standard No. D1193-1977.
20.
Dasgupta
,
S.
,
Bhagat
,
A. A. S.
,
Horner
,
M.
,
Papautsky
,
I.
, and
Banerjee
,
R. K.
,
2008
, “
Effects of Applied Electric Field and Microchannel Wetted Perimeter on Electroosmotic Velocity
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
185
192
.10.1007/s10404-007-0236-6
21.
Comandur
,
K.
,
Bhagat
,
A.
,
Dasgupta
,
S.
,
Papautsky
,
I.
, and
Banerjee
,
R.
,
2010
, “
Transport and Reaction of Nanoliter Samples in a Microfluidic Reactor Using Electro-Osmotic Flow
,”
J. Micromech. Microeng.
,
20
(3), p.
035017
.10.1088/0960-1317/20/3/035017
22.
Bousse
,
L.
,
Mostarshed
,
S.
,
Van Der Shoot
,
B.
,
De Rooij
,
N.
,
Gimmel
,
P.
, and
Göpel
,
W.
,
1991
, “
Zeta Potential Measurements of Ta2O5 and SiO2 Thin Films
,”
J. Colloid Interface Sci.
,
147
(
1
), pp.
22
32
.10.1016/0021-9797(91)90130-Z
23.
Prakash
,
P.
,
Grissom
,
M. D.
,
Rahn
,
C. D.
, and
Zydney
,
A. L.
,
2006
, “
Development of an Electroosmotic Pump for High Performance Actuation
,”
J. Membr. Sci.
,
286
(
1
), pp.
153
160
.10.1016/j.memsci.2006.09.029
24.
Yao
,
S.
,
Myers
,
A. M.
,
Posner
,
J. D.
,
Rose
,
K. A.
, and
Santiago
,
J. G.
,
2006
, “
Electroosmotic Pumps Fabricated From Porous Silicon Membranes
,”
J. Microelectromech. Syst.
,
15
(
3
), pp.
717
728
.10.1109/JMEMS.2006.876796
25.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
26.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.