All current analytical methods for calculating junction temperature of field effect transistor (FET) and monolithic microwave integrated circuits (MMIC) devices have assumed a constant uniform temperature at the base of the substrate. In a packaged device, however, where the substrate is attached to a carrier, finite element thermal analyses have shown that the temperature distribution along the base of the substrate is not uniform but has a bell-shaped distribution. Consequently, current analytical methods which attempt to predict the junction temperature of a packaged MMIC device by assuming a constant uniform temperature at the base of the substrate have been found to be inaccurate. In this paper, it is found that the temperature distribution along the base of a substrate can be well approximated by a Lorentz distribution which can be determined from a few basic parameters of the device such as the gate length, gate pitch, number of gates, and length of substrate. By incorporating this Lorentz temperature distribution at the base of the substrate with a new closed-form solution for the three-dimensional temperature distribution within the substrate, a new analytical method is developed for accurately calculating the junction temperature of MMIC devices. The accuracy of this new method has been verified with junction temperatures of MMIC devices measured using thermoreflectance thermography (TRT) as well as those calculated using finite element analysis (FEA).

References

References
1.
Chang
,
S. K.
,
Jin
,
C. J.
,
Dong
,
P. C.
, and
In
,
B. Y.
,
2005
, “
Thermal Characterization of MMIC by Numerical Analysis
,”
Asia-Pacific Microwave Conference
(
APMC 2005
), Suzhou, China, December 4–7.10.1109/APMC.2005.1606502
2.
Li
,
L.
,
Coccioli
,
R.
,
Nary
,
K.
, and
Canfield
,
P.
,
2005
, “
Multi-Scale Thermal Analysis of GaAs RF Device
,”
IEEE 21st Annual Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, March 15–17, pp.
259
263
10.1109/STHERM.2005.1412189.
3.
Wilson
,
J.
, and
Decker
,
K.
,
1994
, “
GaAs MMIC Thermal Modeling for Channel Temperatures in Accelerated Life Test Fixtures and Microwave Modules
,”
IEEE/CPMT 10th Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM X
), San Jose, CA, February 1–3, pp.
121
128
10.1109/STHERM.1994.288985.
4.
Wright
,
J. L.
,
Marks
,
B. W.
, and
Decker
,
K. D.
,
1991
, “
Modeling of MMIC Devices for Determining MMIC Channel Temperatures During Life Tests
,”
IEEE Seventh Annual Semiconductor Thermal Measurement and Management Symposium
(SEMI-THERM VII)
,
IEEE, Phoenix, AZ
, February 12–14, pp.
131
139
10.1109/STHERM.1991.152926.
5.
Lindsted
,
R. D.
, and
Surty
,
R. J.
,
1972
, “
Steady-State Junction Temperatures of Semiconductor Chips
,”
IEEE Trans. Electron Devices
,
19
(
1
), pp.
41
44
.10.1109/T-ED.1972.17369
6.
Gao
,
G. B.
,
Wang
,
M. Z.
,
Gui
,
X.
, and
Morkoc
,
H.
,
1989
, “
Thermal Design Studies of High-Power Heterojunction Bipolar Transistors
,”
IEEE Trans. Electron Devices
,
36
(
5
), pp.
854
863
.10.1109/16.299666
7.
Lee
,
C. C.
,
Palisoc
,
A. L.
, and
Min
,
Y. J.
,
1989
, “
Thermal Analysis of Integrated Circuit Devices and Packages
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
12
(
4
), pp.
701
709
.10.1109/33.49036
8.
Ditri
,
J.
,
2007
, “
Heat Conduction in Microwave Devices With Orthotropic and Temperature-Dependent Thermal Conductivity
,”
IEEE Trans. Microwave Theory Tech.
,
55
(
3
), pp.
555
560
.10.1109/TMTT.2006.890526
9.
Kokkas
,
A. G.
,
1974
, “
Thermal Analysis of Multiple-Layer Structures
,”
IEEE Trans. Electron Devices
,
21
(
11
), pp.
674
681
.10.1109/T-ED.1974.17993
10.
Smith
,
D. H.
,
1991
, “
Predicting Operating Temperatures for GaAs ICs
,”
13th Annual Gallium Arsenide Integrated Circuit
(
GaAs IC
) Symposium,
Monterey, CA
, October 20–23, pp.
187
190
10.1109/GAAS.1991.172668.
11.
Haji-Sheikh
,
A.
,
1990
, “
Peak Temperature in High-Power Chips
,”
IEEE Trans. Electron Devices
,
37
(
4
), pp.
902
907
.10.1109/16.52423
12.
Darwish
,
A. M.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2005
, “
Accurate Determination of Thermal Resistance of FETs
,”
IEEE Trans. Microwave Theory Tech.
,
53
(
1
), pp.
306
313
.10.1109/TMTT.2004.839916
13.
Decker
,
S. K. K.
, and
Rosato
,
D.
,
2005
, “
Thermal Characterization of GaAs FETs
,” Application Notes of TriQuint Semiconductor and Harvard Thermal Inc and Case Studies in Coolingzone.com, December, available at: http://www.coolingzone.com/library.php?read=468
14.
Vijayakumar
,
B.
,
Burton
,
R.
, and
Guo
,
Y.
,
2004
, “
Device and Package Level Thermal Modeling of GaAs Power Amplifiers
,”
9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '04
), Las Vegas, NV, June 1–4, Vol.
1
, pp.
291
296
10.1109/ITHERM.2004.1319187.
15.
Harris
,
T. R.
,
Melamed
,
S.
,
Luniya
,
S.
,
Davis
,
W. R.
,
Steer
,
M. B.
,
Doxsee
,
L. E.
,
Obermiller
,
K.
, and
Hawkinson
,
C.
,
2010
, “
Thermal Analysis and Verification of a Mounted Monolithic Integrated Circuit
,”
IEEE SoutheastCon 2010: Energizing Our Future
,
Concord, NC
, March 18–21, pp.
37
40
10.1109/SECON.2010.5453924.
16.
Lee
,
S.
,
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
4th ASME/JSME Thermal Engineering Joint Conference
, Lahaina, HI, March 19–24, Vol. 4, pp.
199
206
.
17.
Masana
,
F. N.
,
2001
, “
A New Approach to the Dynamic Thermal Modelling of Semiconductor Packages
,”
Microelectron. Reliab.
,
41
(
6
), pp.
901
912
10.1016/s0026-2714(01)00013-0.
18.
Ling
,
J. H. L.
, and
Tay
,
A. A. O.
,
2014
, “
A New Accurate Closed-Form Analytical Solution for Junction Temperature of High-Powered Devices
,”
ASME J. Electron. Packag.
,
136
(1), p.
011007
10.1115/1.4026352.
19.
Negus
,
K. J.
,
Franklin
,
R. W.
, and
Yovanovich
,
M. M.
,
1989
, “
Thermal Modeling and Experimental Techniques for Microwave Bipolar Devices
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
12
(
4
), pp.
680
689
.10.1109/33.49033
20.
Leturcq
,
P.
,
Dorkel
,
J. M.
,
Napieralski
,
A.
, and
Lachiver
,
E.
,
1987
, “
A New Approach to Thermal Analysis of Power Devices
,”
IEEE Trans. Electron Devices
,
34
(
5
), pp.
1147
1156
.10.1109/T-ED.1987.23057
21.
Ling
,
J. H. L.
,
Tay
,
A. A. O.
,
Choo
,
K. F.
, and
Chen
,
W.
,
2012
, “
Thermal Characterization and Modelling of a Gallium Arsenide Power Amplifier MMIC
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
San Diego, CA
, May 30–June 1, pp.
440
445
.10.1109/ITHERM.2012.6231464
22.
Rosato
,
D.
,
Decker
,
K.
, and
Ko
,
S.
,
2001
, “
Thermal Characterization Techniques for GaAs FETs
,”
EE Times Asia
, October 1, 1–3.http://www.eetasia.com/ART_8800142572_499501_TA_5562af73.HTM?jumpto=view_welcomead_1407269622719
You do not currently have access to this content.