Thermoelectric generators (TEGs) can significantly improve the net power consumption and battery life of the low power mobile devices or high performance devices by generating power from their waste heat. Recent advancements also show that the ultrathin thermoelectric devices can be fabricated and integrated within a micro-electronic package. This work investigates the power generation by an ultrathin TEG embedded within a micro-electronic package considering several key parameters such as load resistance, chip heat flux, and proximity of the TEG to chip. The analysis shows that the power generation from TEGs increases with increasing background heat flux on chip or when TEGs are moved closer to the chip. An array of embedded TEGs is considered in order to analyze the influence of multiple TEGs on total power generation and conversion efficiency. Increasing the number of TEGs from one to nine increases the useful power generation from 72.9 mW to 378.4 mW but decreases the average conversion efficiency from 0.47% to 0.32%. The average power generated per TEG gradually decrease from 72.9 mW to 42.0 mW when number of TEGs is increased from one to nine, but the total useful power generated using nine TEGs is significant and emphasize the benefits of using embedded TEGs to reduce net power consumption in electronics packages.

References

References
1.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
2.
DiSalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
(
5428
), pp.
703
706
.10.1126/science.285.5428.703
3.
Thacher
,
E. F.
,
Helenbrook
,
B. T.
,
Karri
,
M. A.
, and
Richter
,
C. J.
,
2007
, “
Testing of an Automobile Exhaust Thermoelectric Generator in a Light Truck
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
D1
), pp.
95
107
.10.1243/09544070JAUTO51
4.
Wang
,
Z. Y.
,
Leonov
,
V.
,
Fiorini
,
P.
, and
Van Hoof
,
C.
,
2009
, “
Realization of a Wearable Miniaturized Thermoelectric Generator for Human Body Applications
,”
Sens. Actuators
, A,
156
(
1
), pp.
95
102
.10.1016/j.sna.2009.02.028
5.
Zhao
,
L.-D.
,
Lo
,
S.-H.
,
Zhang
,
Y.
,
Sun
,
H.
,
Tan
,
G.
,
Uher
,
C.
,
Wolverton
,
C.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2014
, “
Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals
,”
Nature
,
508
(
7496
), pp.
373
377
.10.1038/nature13184
6.
Crane
,
D. T.
,
LaGrandeur
,
J. W.
,
Harris
,
F.
, and
Bell
,
L. E.
,
2009
, “
Performance Results of a High-Power-Density Thermoelectric Generator: Beyond the Couple
,”
J. Electron. Mater.
,
38
(
7
), pp.
1375
1381
.10.1007/s11664-009-0674-x
7.
Solbrekken
,
G. L.
,
Yazawa
,
K.
, and
Bar-Cohen
,
A.
,
2008
, “
Heat Driven Cooling of Portable Electronics Using Thermoelectric Technology
,”
IEEE Trans. Adv. Packag.
,
31
(
2
), pp.
429
437
.10.1109/TADVP.2008.920356
8.
Xie
,
G.
,
Chen
,
Z.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2012
, “
Numerical Predictions of the Flow and Thermal Performance of Water-Cooled Single-Layer and Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
63
(
3
), pp.
201
225
.10.1080/10407782.2013.730445
9.
Xie
,
G.
,
Liu
,
J.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041010
.10.1115/1.4023035
10.
Xie
,
G.
,
Liu
,
J.
,
Liu
,
Y.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.10.1115/1.4023530
11.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
12.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
(
6856
), pp.
597
602
.10.1038/35098012
13.
Venkatasubramanian
,
R.
,
Watkins
,
C.
,
Stokes
,
D.
,
Posthill
,
J.
, and
Caylor
,
C.
,
2007
, “
Energy Harvesting for Electronics With Thermoelectric Devices Using Nanoscale Materials
,”
IEEE International Electron Devices Meeting
(
IEDM 2007
),
Washington
,
DC
, December 10–12, pp.
367
370
.10.1109/IEDM.2007.4418948
14.
Strasser
,
M.
,
Aigner
,
R.
,
Lauterbach
,
C.
,
Sturm
,
T. F.
,
Franosh
,
M.
, and
Wachutka
,
G.
,
2003
, “
Micromachined CMOS Thermoelectric Generators as On-Chip Power Supply
,”
12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems
, Boston, MA, June 8–12, pp.
45
48
.10.1109/SENSOR.2003.1215249
15.
Li
,
Y.
,
Buddharaju
,
K.
,
Singh
,
N.
,
Lo
,
G. Q.
, and
Lee
,
S. J.
,
2011
, “
Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology
,”
IEEE Electron Device Lett.
,
32
(
5
), pp.
674
676
.10.1109/LED.2011.2114634
16.
Min
,
C.
,
Rosendahl
,
L. A.
,
Condra
,
T. J.
, and
Pedersen
,
J. K.
,
2009
, “
Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator
,”
IEEE Trans. Energy Convers.
,
24
(
1
), pp.
112
124
.10.1109/TEC.2008.2005310
17.
Xiao
,
H.
,
Gou
,
X. L.
, and
Yang
,
C.
,
2008
, “
Simulation Analysis on Thermoelectric Generator System Performance
,”
7th International Conference on System Simulation and Scientific Computing
(
ICSC 2008
), Beijing, China, October 10–12, pp.
1183
1187
.10.1109/ASC-ICSC.2008.4675546
18.
Chen
,
M.
,
Rosendahl
,
L. A.
, and
Condra
,
T.
,
2011
, “
A Three-Dimensional Numerical Model of Thermoelectric Generators in Fluid Power Systems
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
345
355
.10.1016/j.ijheatmasstransfer.2010.08.024
19.
Crane
,
D. T.
,
Kossakovski
,
D.
, and
Bell
,
L. E.
,
2009
, “
Modeling the Building Blocks of a 10% Efficient Segmented Thermoelectric Power Generator
,”
J. Electron. Mater.
,
38
(
7
), pp.
1382
1386
.10.1007/s11664-009-0673-y
20.
Gould
,
C. A.
,
Shammas
,
N. Y. A.
,
Grainger
,
S.
, and
Taylor
,
I.
,
2011
, “
Thermoelectric Cooling of Microelectronic Circuits and Waste Heat Electrical Power Generation in a Desktop Personal Computer
,”
Mater. Sci. Eng., B
,
176
(
4
), pp.
316
325
.10.1016/j.mseb.2010.09.010
21.
Snyder
,
G. J.
, and
Ursell
,
T. S.
,
2003
, “
Thermoelectric Efficiency and Compatibility
,”
Phys. Rev. Lett.
,
91
(
14
), p.
148301
.10.1103/PhysRevLett.91.148301
22.
Gupta
,
M. P.
,
Sayer
,
M. H.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2011
, “
Ultrathin Thermoelectric Devices for On-Chip Peltier Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
9
), pp.
1395
1405
.10.1109/TCPMT.2011.2159304
23.
Sullivan
,
O.
,
Gupta
,
M. P.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2012
, “
Array of Thermoelectric Coolers for On-Chip Thermal Management
,”
ASME J. Electron. Packag.
,
134
(
2
), p. 021005.10.1115/1.4006141
24.
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
Taylor & Francis
, New York.
25.
Sullivan
,
O.
,
Alexandrov
,
B.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2012
, “
Compact Model of Thermoelectric Coolers on a Micro-Electronic Chip
,”
ASME
Paper No. IMECE2011-64881.10.1115/IMECE2011-64881
You do not currently have access to this content.