The attachment of a shield to a heat sink enhances the thermal performance. But, forming slots in the shield increases thermal resistance. We found that increasing the slot width enhances the flow performance over the heat sink and this improvement continues as the number of slots increases, but the thermal performance, on the other hand, decreases. Slots work as a flow bypass and create jets to destroy eddies and vortices created by the shield. Therefore, pressure drop at Re = 55,000 for a slotted case is about 80% lower than a solid shield. For suitable thermal resistance and moderate pressure drop, the appropriate slotted shield will have 3–7 slots at different slot widths. These slots preserve the improvement of thermal resistance with a suitable pressure drop.

References

References
1.
Morega
,
A. M.
,
Bejan
,
A.
, and
Lee
,
S.
,
1995
, “
Free Stream Cooling of a Stack of Parallel Plates
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
519
531
.10.1016/0017-9310(94)00123-D
2.
Sparrow
,
E.
,
Baliga
,
B.
, and
Patankar
,
S.
,
1978
, “
Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
572
579
.10.1115/1.3450859
3.
Sparrow
,
E.
, and
Kadle
,
D.
,
1986
, “
Effect of Tip-to-Shroud Clearance on Turbulent Heat Transfer From a Shrouded, Longitudinal Fin Array
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
519
524
.10.1115/1.3246965
4.
Wirtz
,
R. A.
,
Chen
,
W.
, and
Zhou
,
R.
,
1994
, “
Effects of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
116
(
3
), pp.
206
211
.10.1115/1.2905687
5.
Azar
,
K.
, and
Tavassoli
,
B.
,
2003
, “
How Much Heat Can be Extracted From a Heat Sink?
,”
Electron. Cool.
,
9
(2), pp.
30
37
, available at: http://www.electronics-cooling.com/2003/05/how-much-heat-can-be-extracted-from-a-heat-sink/
6.
Simons
,
R. E.
,
2004
, “
Estimating the Effect of Flow Bypass on Parallel Plate-Fin Heat Sink Performance
,”
Electron. Cool.
, 10 (February), available at: http://www.electronics-cooling.com/2004/02/estimating-the-effect-of-flow-bypass-on-parallel-plate-fin-heat-sink-performance/
7.
Al-Sarkhi
,
A.
,
Abu-Nada
,
E.
,
Akash
,
B.
, and
Jaber
,
J.
,
2003
, “
Numerical Investigation of Shrouded Fin Array Under Combined Free and Forced Convection
,”
Int. Commun. Heat Mass Transfer
,
30
(
3
), pp.
435
444
.10.1016/S0735-1933(03)00061-7
8.
Al-Sarkhi
,
A.
,
2005
, “
Comparison Between Variable and Constant Height Shrouded Fin Array Subjected to Forced Convection Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
32
(
3
), pp.
548
556
.10.1016/j.icheatmasstransfer.2004.02.017
9.
Elshafei
,
E.
,
2007
, “
Effect of Flow Bypass on the Performance of a Shrouded Longitudinal Fin Array
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2233
2242
.10.1016/j.applthermaleng.2007.01.017
10.
Jousson
,
H.
, and
Palm
,
B.
,
2000
, “
Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
47
54
.10.1109/6144.833041
11.
Zhu
,
Y.
, and
Li
,
Y.
,
2008
, “
Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
11
), p.
111801
.10.1115/1.2970072
12.
Barrett
,
A. V.
, and
Obinelo
,
I. F.
,
1997
, “
Characterization of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects Through CFD Methods
,”
Thirteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM XIII
), Austin, TX, January 28–30, pp.
158
164
.10.1109/STHERM.1997.566793
13.
Yuan
,
T.
,
1996
, “
Computational Modelling of Flow Bypass Effects on Straight Fin Heat Sink in Rectangular Duct
,”
Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM XII
), Auxtin, TX, March 5–7, pp.
164
168
.10.1109/STHERM.1996.545106
14.
Diani
,
A.
,
Mancin
,
S.
,
Zilio
,
C.
, and
Rossetto
,
L.
,
2013
, “
An Assessment on Air Forced Convection on Extended Surfaces: Experimental Results and Numerical Modeling
,”
Int. J. Therm. Sci.
,
67
, pp.
120
134
.10.1016/j.ijthermalsci.2012.11.012
15.
Chen
,
H.-T.
,
Lai
,
S.-T.
, and
Haung
,
L.-Y.
,
2012
, “
Investigation of Heat Transfer Characteristics in Plate-Fin Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
352
360
.10.1016/j.applthermaleng.2012.08.040
16.
Prstic
,
S.
, and
Bar-Cohen
,
A.
,
2006
, “
‘Heat Shield’—An Enhancement Device for an Unshrouded, Forced Convection Heat Sink
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
172
176
.10.1115/1.2188955
17.
Li
,
H.-Y.
,
Tsai
,
G.-L.
,
Chiang
,
M.-H.
, and
Lin
,
J.-Y.
,
2009
, “
Effect of a Shield on the Hydraulic and Thermal Performance of a Plate-Fin Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
233
240
.10.1016/j.icheatmasstransfer.2008.11.012
18.
Tsai
,
G.-L.
,
Li
,
H.-Y.
, and
Lin
,
C.-C.
,
2010
, “
Effect of the Angle of Inclination of a Plate Shield on the Thermal and Hydraulic Performance of a Plate-Fin Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
37
(
4
), pp.
364
371
.10.1016/j.icheatmasstransfer.2010.01.002
19.
Li
,
H.-Y.
, and
Chiang
,
M.-H.
,
2011
, “
Effects of Shield on Thermal-Fluid Performance of Vapor Chamber Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
7
), pp.
1410
1419
.10.1016/j.ijheatmasstransfer.2010.11.052
20.
Shaalan
,
M. R.
,
Saleh
,
M. A.
,
Mesalhy
,
O.
, and
Elsayed
,
M. L.
,
2012
, “
Thermo/Fluid Performance of a Shielded Heat Sink
,”
Int. J. Therm. Sci.
,
60
, pp.
171
181
.10.1016/j.ijthermalsci.2012.05.009
21.
Zhang
,
Y.-L.
,
Liu
,
J.-P.
,
Chong
,
D.-T.
, and
Yan
,
J.-J.
,
2013
, “
Experimental Investigation on the Heat Transfer and Flow Performances of the Fin Array With Shield in Bypass
,”
Int. J. Heat Mass Transfer
,
56
(
1
), pp.
674
682
.10.1016/j.ijheatmasstransfer.2012.08.008
22.
ANSYS, 2010, FLUENT User Guide, A. F. U. S., Release 13.0, ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.