Cooling is a major component in the enormous energy consumption in data centers. Accurate evaluation of cooling inside a data center forms the backbone of all the attempts for improving cooling efficiency. Models based on computational fluid dynamics (CFD) are typically used for accurate evaluation, but have a drawback of high computation time. This paper presents a novel thermal predictor to evaluate data center cooling in seconds. The key idea is to extract information from a single instance of CFD simulation using metrics called as influence indices to build the fast thermal predictor. Then, this predictor can evaluate the cooling for altered operation of data center with comparable accuracy in seconds without the need for repetitive CFD simulations. This paper demonstrates the accuracy of the thermal predictor by comparing with CFD simulations for a sample, but realistic data center. The fast thermal predictor then successfully passed more challenging tests in a real production data center and proved its practical utility. The results of the thermal predictor compared with measurements carried out in the production data center are also presented. This fast thermal predictor is an important milestone in the development of a method for model-based real time control of data center cooling.

References

References
1.
Koomey
,
J.
,
2011
,
Growth in Data Center Electricity Use 2005 to 2010
,
Analytics Press
,
Oakland, CA
.
2.
Greenberg
,
S.
,
Mills
,
E.
,
Tschudi
,
B.
,
Rumsey
,
P.
, and
Myatt
,
B.
,
2006
, “
Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers
,”
ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove,
CA, Aug. 13–18, pp.
76
87
.
3.
Singh
,
U.
,
Singh
,
A. K.
,
Parvez
,
S.
, and
Sivasubramaniam
,
A.
,
2010
, “
CFD Based Operational Thermal Efficiency Improvement of a Production Data Center
,”
First USENIX Conference on Sustainable Information Technology
(SustainIT'10), San Jose, CA, Feb. 22, Vol.
10
, p.
6
–6.
4.
Bhagwat
,
H.
,
Singh
,
A.
,
Vasan
,
A.
, and
Sivasubramaniam
,
A.
,
2013
, “
Faster Exploration of Data Center Cooling Using Thermal Influence Indices
,”
Sustainable Comput.: Inf. Syst.
,
3
(
3
), pp.
120
131
.10.1016/j.suscom.2013.01.004
5.
Bhagwat
,
H.
,
Singh
,
A.
,
Vasan
,
A.
, and
Sivasubramaniam
,
A.
,
2012
, “
Thermal Influence Indices: Causality Metrics for Efficient Exploration of Data Center Cooling
,”
International Green Computing Conference
(
IGCC
), San Jose, CA, June 4–8.10.1109/IGCC.2012.6322254
6.
ASHRAE Technical Committee (TC) 9.9
,
2011
, “
Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance
,” white paper, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
7.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.10.1109/TDMR.2004.840855
8.
Heath
,
T.
,
Centeno
,
A. P.
,
George
,
P.
,
Ramos
,
L.
,
Jaluria
,
Y.
, and
Bianini
,
R.
,
2006
, “
Mercury and Freon: Temperature Emulation and Management for Server Systems
,”
ACM SIGARCH Computer Architecture News
,
34
(5), pp.
106
116
.10.1145/1168919.1168872
9.
Choi
,
J.
,
Kim
,
Y.
,
Sivasubramaniam
,
A.
,
Srebric
,
J.
,
Wang
,
Q.
, and
Lee
,
J.
,
2008
, “
A CFD-Based Tool for Studying Temperature in Rack-Mounted Servers
,”
IEEE Trans. Comput.
,
57
(
8
), pp.
1129
1142
.10.1109/TC.2008.52
10.
Rambo
,
J.
, and
Joshi
,
Y.
,
2005
, “
Thermal Performance Metrics for Arranging Forced Air Cooled Servers in a Data Processing Cabinet
,”
ASME J. Electron. Packag.
,
127
(
4
), pp.
452
459
.10.1115/1.2056575
11.
Schmidt
,
R.
, and
Cruz
,
E.
,
2003
, “
Cluster of High Powered Racks Within a Raised Floor Computer Data Center: Effect of Perforated Tile Flow Distribution on Rack Inlet Air Temperatures
,”
ASME
Paper No. IMECE2003-42240.10.1115/IMECE2003-42240
12.
Karki
,
K. C.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
,
2003
, “
Use of Computational Fluid Dynamics for Calculating Flow Rates Through Perforated Tiles in Raised Floor Data Telecom Centers
,”
Int. J. Heat., Vent., Air Cond. Refrig. Res.
,
9
(
2
), pp.
153
166
.10.1080/10789669.2003.10391062
13.
Bash
,
C. B.
,
Patel
,
C. D.
, and
Sharma
,
R. K.
,
2006
, “
Dynamic Thermal Management of Air Cooled Data Centers
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM'06
), San Diego, CA, May 30–June 2, pp.
452
459
.10.1109/ITHERM.2006.1645377
14.
Moore
,
J.
,
Chase
,
J.
,
Ranganathan
,
P.
, and
Sharma
,
R.
,
2005
, “
Making Scheduling ‘Cool’: Temperature-Aware Workload Placement in Data Centers
,”
USENIX Annual Technical Conference
, Anaheim, CA, April 10–15, p. 5–5.
15.
Tang
,
Q.
,
Mukherjee
,
T.
,
Gupta
,
S. K.
, and
Cayton
,
P.
,
2006
, “
Sensor-Based Fast Thermal Evaluation Model for Energy Efficient High-Performance Datacenters
,”
IEEE Fourth International Conference
, Intelligent Sensing and Information Processing (
ICISIP 2006
), Bangalore, India, Dec. 15–18, pp.
203
208
.10.1109/ICISIP.2006.4286097
16.
Moore
,
J.
,
Chase
,
J. S.
, and
Ranganathan
,
P.
,
2006
, “
Weatherman: Automated, Online and Predictive Thermal Mapping and Management for Data Centers
,”
IEEE International Conference on Autonomic Computing
(
ICAC'06
), Dublin, Ireland, June 13–16, pp.
155
164
.10.1109/ICAC.2006.1662394
17.
Healey
,
C. M.
,
VanGilder
,
J. W.
, and
Zhang
,
X.
,
2012
, “
A Method for Predicting Key Data Center Temperatures by Known Airflow Streams
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1202
1208
.10.1109/ITHERM.2012.6231559
18.
Shrivastava
,
S. K.
,
Iyengar
,
M.
,
Sammakia
,
B. G.
,
Schmidt
,
R.
, and
VanGilder
,
J. W.
,
2006
, “
Experimental-Numerical Comparison for a High-Density Data Center: Hot Spot Heat Fluxes in Excess of 500 W/ft2
,”
IEEE Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp.
402
411
.10.1109/ITHERM.2006.1645371
19.
Moss
,
D.
,
2005
, “
Guidelines for Assessing Power and Cooling Requirements in the Data Center
,” Dell Power Solutions, August, pp. 62–65, available at: http://www.dell.com/downloads/global/power/ps3q05--20050115-Moss.pdf
20.
Liebert
,
T. M.
,
2010
, “
Liebert PEX: Technical Data Manual—Large Frame
,” Emerson Network Power, Columbus, OH, pp.
10
13
.
21.
Vasan
,
A.
,
Sivasubramaniam
,
A.
,
Shimpi
, V
.
,
Sivabalan
,
T.
, and
Subbiah
,
R.
,
2010
, “
Worth Their Watts?—An Empirical Study of Datacenter Servers
,” IEEE 16th International Symposium on High Performance Computer Architecture (
HPCA
), Bangalore, India, Jan. 9–14.10.1109/HPCA.2010.5463056
22.
Chapra
,
S. C.
, and
Canale
,
R.
,
2007
,
Numerical Methods for Engineers
,
Tata McGraw-Hill
,
New Delhi, India
, pp.
265
272
.
You do not currently have access to this content.