In situ sensors can measure wire bond reliability nondestructively during thermal aging. Conventional thermal aging of ball bonds requires ovens heating the entire microchip along with the wire bonds, also affecting interconnects for in situ sensors. To protect the interconnects and on-chip logic components of in situ sensor chips, conventional thermal aging is kept below a safe temperature limit of 200 °C. At higher temperatures, the doped Si components change their characteristics and transistors stop working. Localized on-chip heating is introduced to circumvent these drawbacks using a new microheater to increase the safe temperature limit for nondestructive reliability assessment with in situ sensors. The effect of temperature on surrounding components is reduced. The microheater is a rectangular design resistive heater made from N+ silicon. In addition, a pad resistance measurement is introduced that indicates bond aging more conveniently than previously reported bond resistance measurements.

References

References
1.
Harman
,
G. G.
,
2010
,
Wire Bonding in Microelectronics
,
3rd ed.
,
McGraw-Hill
, New York.
2.
Blish
,
R. C.
, and
Parobek
,
L.
,
1983
, “
Wire Bond Integrity Test Chip
,”
21st Annual Reliability Physics Symposium
, Phoenix, AZ, Apr. 5–7, pp.
142
147
.10.1109/IRPS.1983.361975
3.
Maiocco
,
L.
,
Smyers
,
D.
,
Munroe
,
P. R.
, and
Baker
,
I.
,
1990
, “
Correlation Between Electrical Resistance and Microstructure in Gold Wirebonds on Aluminum Films
,”
IEEE Trans. Compon., Hybrids Manuf. Technol.
,
13
(
3
), pp.
592
595
.10.1109/33.58865
4.
Murcko
,
R. M.
,
Susko
,
R. A.
, and
Lauffer
,
J. M.
,
1991
, “
Resistance Drift in Aluminum to Gold Ultrasonic Wire Bonds
,”
IEEE Trans. Compon. Hybrid Manuf. Technol.
,
14
(
4
), pp.
843
847
.10.1109/33.105143
5.
Mayer
,
M
.,
2008
, “
Non-Destructive Monitoring of Au Ball Bond Stress During High-Temperature Aging
,”
IEEE Electronic Components and Technology Conference
(
ECTC 2008
), Lake Buena Vista, FL, May 27–30, pp.
1762
1768
.10.1109/ECTC.2008.4550219
6.
Khoury
,
S. L.
,
Burkhard
,
D. J.
,
Galloway
,
D. P.
, and
Scharr
,
T. A.
,
1990
, “
A Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices
,”
40th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 20–23, pp.
768
776
.10.1109/ECTC.1990.122277
7.
Murali
,
S.
,
Srikanth
,
N.
, and
Vath
,
C. J.
, III
,
2004
, “
Effect of Wire Size on the Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire Bonds
,”
Mater. Lett.
,
58
(
25
), pp.
3096
3101
.10.1016/j.matlet.2004.05.070
8.
Hang
,
C. J.
,
Wang
,
C. Q.
,
Mayer
,
M.
,
Tian
,
Y. H.
,
Zhou
,
Y.
, and
Wang
,
H. H.
,
2008
, “
Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds During Isothermal Aging
,”
Microelectron. Reliab.
,
48
(
3
), pp.
416
424
.10.1016/j.microrel.2007.06.008
9.
McCracken
,
M. J.
,
Koda
,
Y.
,
Kim
,
H.-J.
,
Mayer
,
M.
,
Persic
,
J.
,
Hwang
,
J. S.
, and
Moon
,
J.-T.
,
2013
, “
Explaining Nondestructive Bond Stress Data From High-Temperature Testing of Au-Al Wire Bonds
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
12
), pp.
2029
2036
.10.1109/TCPMT.2013.2262109
10.
Kim
,
H.-J.
,
Lee
,
J.-Y.
,
Paik
,
K.-W.
,
Koh
,
K.-W.
,
Won
,
J.
,
Choe
,
S.
,
Lee
,
J.
,
Moon
,
J.-T.
, and
Park
,
Y.-J.
,
2003
, “
Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
367
374
.10.1109/TCAPT.2003.815121
11.
Wulff
,
F. W.
,
Breach
,
C. D.
,
Stephan
,
D.
,
Saraswati
,
T.
, and
Dittmer
,
K. J.
,
2004
, “
Characterisation of Intermetallic Growth in Copper and Gold Ball Bonds on Aluminium Metallization
,”
6th IEEE Electronics Packaging Technology Conference
(
EPTC 2004
), Singapore, Dec. 8–10, pp.
348
353
.10.1109/EPTC.2004.1396632
12.
Gentinne
,
B.
,
Eggermont
,
J.-P.
,
Flandre
,
D.
, and
Colinge
,
J.-P.
,
1997
, “
Fully Depleted SOI-CMOS Technology for High Temperature IC Applications
,”
Mater. Sci. Eng., B
,
46
(
1
), pp.
1
7
.10.1016/S0921-5107(96)01921-6
13.
Mayer
,
M.
,
McCracken
,
M.
, and
Persic
,
J.
,
2013
, “
Development of Accelerated Method for Thermal Cycling in Electronic Packaging Application
,”
ASME J. Electron. Packag.
,
135
(2), p.
021007
.10.1115/1.4023911
14.
Cho
,
J.
,
Jeong
,
H.
,
Moon
,
J.
,
Yoo
,
S.
,
Seo
,
J.
,
Lee
,
S.
,
Ha
,
S.
,
Her
,
E.
,
Kang
,
E.
, and
Oh
,
K.
,
2009
, “
Thermal Reliability & IMC Behavior of Low Cost Alternative Au-Ag-Pd Wire Bonds to Al Metallization
,” 59th IEEE Electronic Components and Technology Conference (
ECTC 2009
), San Diego, CA, May 26–29, pp.
1569
1573
.10.1109/ECTC.2009.5074222
15.
Crary
,
S. B.
,
1987
, “
Thermal Management of Integrated Microsensors
,”
Sens. Actuators
,
12
(4), pp.
303
312
.10.1016/0250-6874(87)80050-1
16.
Zhao
,
Z.
,
Glod
,
S.
, and
Poulikakos
,
D.
,
2000
, “
Pressure and Power Generation During Explosive Vaporization on a Thin-Film Microheater
,”
Int. J. Heat Mass Transfer
,
43
(2), pp.
281
296
.10.1016/S0017-9310(99)00129-5
17.
Lambropoulos
,
J. C.
,
1989
, “
Thermal Conductivity of Dielectric Thin Films
,”
J. Appl. Phys.
,
66
(9), pp.
4230
4242
.10.1063/1.343963
18.
Doebelin
,
E. O.
,
1990
,
Measurement Systems Application and Design
,
4th ed.
,
McGraw-Hill
,
New York
, pp.
58
67
.
19.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium From 3 K to the Melting Point
,”
Phys. Rev.
,
134
(
4A
), p.
A1058
.10.1103/PhysRev.134.A1058
20.
Paul
,
O.
, and
Baltes
,
H.
,
1993
, “
Thermal Conductivity of CMOS Materials for the Optimization of Microsensors
,”
J. Micromech. Microeng.
,
3
(
3
), pp.
110
112
.10.1088/0960-1317/3/3/003
21.
Paul
,
O.
,
Von Arx
,
M.
, and
Baltes
,
H.
,
1995
, “
Process-Dependent Thermophysical Properties of CMOS IC Thin Films
,”
8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX
,
Stockholm, Sweden, June 25–29
, Vol.
1
, pp.
178
181
.10.1109/SENSOR.1995.717128
22.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
,
1998
, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
30
36
.10.1115/1.2830059
23.
McCracken
,
M.
, and
Mayer
,
M.
,
2008
, “
Heat Sink Effect of a Gold Wire Bond Next to Hot Spots on a Microchip
,” IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, CA, Oct. 13–16.
24.
van der Pauw
,
L. J.
,
1958
, “
A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape
,” Philips Research Reports,
13
, pp.
1
9
.
25.
Mayer
,
M.
, and
Kim
,
S.
,
2014
, “
Reliability Testing of Wire Bonds Using Pad Resistance With van der Pauw Method
,”
64th Electronic Components and Technology Conference (ECTC 2014)
, Lake Buena Vista, FL, May 27–30, pp.
1471
1476
.
You do not currently have access to this content.