Defense Advanced Research Project Agency's (DARPA's) thermal ground plane (TGP) effort was aimed at combining the advantages of vapor chambers or two-dimensional (2D) heat pipes and solid conductors by building thin, high effective thermal conductivity, flat heat pipes out of materials with thermal expansion coefficients that match current electronic devices. In addition to the temperature uniformity and minimal load-driven temperature variations associated with such two phase systems, in their defined parametric space, flat heat pipes are particularly attractive for Department of Defense and commercial systems because they offer a passive, reliable, light-weight, and low-cost path for transferring heat away from high power dissipative components. However, the difference in thermal expansion coefficients between silicon or ceramic microelectronic components and metallic vapor chambers, as well as the need for a planar, chip-size attachment surface for these devices, has limited the use of commercial of the shelf flat heat pipes in this role. The primary TGP goal was to achieve extreme lateral thermal conductivity, in the range of 10 kW/mK–20 kW/mK or approximately 25–50 times higher than copper and 10 times higher than synthetic diamond, with a thickness of 1 mm or less.

References

References
1.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Bloschock
,
K.
,
Jankowski
,
N.
, and
Darin
,
S.
,
2014
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results Final Report
,” DARPA Thermal Ground Plane (TGP) DOC Report No. 21479.
2.
Oshman
,
C.
,
Shi
,
B.
,
Li
,
C.
,
Yang
,
R. G.
,
Lee
,
Y. C.
, and
Bright
,
V. M.
,
2010
, “
Fabrication and Testing of a Flat Polymer Micro Heat Pipe
,”
15th International Solid-State Sensors, Actuators and Microsystems Conference
, (
TRANSDUCERS 2009
), Denver, CO, June 21–25, pp. 1999-2002.
3.
Oshman
,
C.
,
Qian
,
L.
,
Li-Anne
,
L.
,
Ronggui
,
Y.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2012
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015001
.
4.
Yang
,
R. G.
,
Lee
,
Y. C.
,
Bright
,
V. M.
,
Li
,
C.
,
Peterson
,
G. P.
,
Oshman
,
C.
,
Shi
,
B.
, and
Cheng
,
J.
,
2011
, “
Flexible Thermal Ground Plane and Manufacturing the Same
,” U.S. Patent No. 20110017431 A1.
5.
Oshman
,
C. J.
,
2012
, “
Development, Fabrication, and Experimental Study of Flat Polymer Micro Heat Pipes
,” Ph.D. dissertation, University of Colorado, Boulder, CO.
6.
Oshman
,
C.
,
Shi
,
B. C. L.
,
Ronggui
,
Y.
,
Lee
,
Y. C.
,
Peterson
,
G. P.
, and
Bright
,
V. M.
,
2011
, “
The Development of Polymer-Based Flat Heat Pipes
,”
IEEE J. Microelectromech. Syst.
,
20
(
2
), pp.
410
417
.
7.
Hwang
,
G. S.
,
Nam
,
Y.
,
Flemming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2010
, “
Multi-Artery Heat Pipe Spreader: Experiment
,”
Int. J. Heat Mass Transfer
,
53
(13–14), pp.
2662
2669
.
8.
Hwang
,
G. S.
,
Nam
,
Y.
,
Flemming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2011
, “
Multi-Artery Heat-Pipe Spreader: Lateral Liquid Supply
,”
Int. J. Heat Mass Transfer
,
54
(11–12), pp.
2334
2340
.
9.
Nam
,
Y.
,
Sharratt
,
S.
, and
Ju
,
Y. S.
,
2011
, “
Characterization and Modeling of the Heat Transfer Performance of Nanostructured Cu Micropost Wicks
,”
ASME J. Heat Transfer
,
133
(
10
), p.
101502
.
10.
Dussinger
,
P.
,
Ju
,
Y. S.
,
Catton
,
I.
, and
Kaviany
,
M.
,
2012
, “
High Heat Flux, High Power, Low Resistance, Low CTE Two-Phase Thermal Ground Plans for Direct Die Attach Applications
,”
Government Microcircuit Applications and Critical Technology Conference (GOMACTech-12)
, Las Vegas, NV, March 19–22, Paper No. 22.4.
11.
Ju
,
Y. S.
,
Kaviany
,
M.
,
Nam
,
Y.
,
Sharratt
,
S.
,
Hwang
,
G. S.
,
Catton
,
I.
, and
Fleming
,
E.
,
2013
, “
Planar Vapor Chamber With Hybrid Evaporator Wicks for the Thermal Management of High-Heat-Flux and High-Power Optoelectronic Devices
,”
Int. J. Heat Mass Transfer
,
60
, pp.
163
169
.
12.
Cai
,
Q.
,
Bhunia
,
A.
,
Tsai
,
C.
,
Kendig
,
M. W.
, and
DeNatale
,
J. F.
,
2013
, “
Studies of Material and Process Compatibility in Developing Compact Silicon Vapor Chambers
,”
J. Micromech. Microeng.
,
23
(6), p.
065003
.
13.
Cai
,
Q.
, and
Chen
,
Y. C.
,
2012
, “
Investigations of Bi-Porous Wick Structure Dryout
,”
ASME J. Heat Transfer
,
134
(
2
), p.
021503
.
14.
Cai
,
Q.
,
Chen
,
B. C.
,
Tsai
,
C.
, and
Chen
,
C. L.
,
2010
, “
Development of Scalable Silicon Heat Spreader for High Power Electronic Devices
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041009
.
15.
Cai
,
Q.
, and
Chen
,
L. C.
,
2010
, “
Design and Test of CNT Biwick Structure for High Heat Flux Phase Change Heat Transfer
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052403
.
16.
Srivastava
,
N.
,
Din
,
C.
,
Judson
,
A.
,
MacDonald
,
N. C.
, and
Meinhart
,
C. D.
,
2010
, “
A Unified Scaling Model for Flow Through a Lattice of Microfabricated Posts
,”
Lab Chip
,
10
(
9
), pp.
1148
1152
.
17.
Ding
,
C.
,
Soni
,
G.
,
Bozorgi
,
P.
,
Piorek
,
B. D.
,
Meinhart
,
C. D.
, and
MacDonald
,
N. C.
,
2010
, “
A Flat Heat Pipe Architecture Based on Nanostructured Titania
,”
J. Microelecmech. Syst.
,
19
(
4
), pp.
878
884
.
18.
Dhillon
,
N. S.
,
Chan
,
M. W.
,
Cheng
,
J. C.
, and
Pisano
,
A. P.
,
2011
, “
Noninvasive Hermetic Sealing of Degassed Liquid Inside a Microfluidic Device Based on Induction Heating
,”
International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)
, Seoul, South Korea, Nov. 15–18, pp. 197–200.
19.
Dhillon
,
N. S.
,
Hogue
,
C.
,
Cheng
,
J. C.
, and
Pisano
,
A. P.
,
2011
, “
Experimental Investigation of Thin-Film Evaporation in an Open-Loop Columnated Micro-Evaporator
,” International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Seoul, South Korea, Nov. 15–18, pp. 205–208.
20.
De Bock
,
H. P.
,
Chauhan
,
S.
,
Chamarthy
,
P.
,
Eastman
,
C.
,
Weaver
,
S.
,
Whalen
,
B. P.
,
Deng
,
T.
,
Russ
,
B.
,
Gerner
,
F. M.
,
Johnson
,
D.
,
Courson
,
D.
,
Leland
,
Q.
, and
Yerkes
,
K.
,
2008
, “
Development and Experimental Validation of a Micro/Nano Thermal Ground Plane
,”
ASME
Paper No. AJTEC2011-44646.
21.
Varanasi
,
K. K.
,
Deng
,
T.
,
Chamarthy
,
P.
,
Chauhan
,
S.
,
Bock
,
P.
,
Kulkarni
,
A.
,
Mandrusiak
,
G.
,
Rush
,
B.
,
Russ
,
B.
,
Denault
,
L.
,
Weaver
,
S.
,
Gerner
,
F.
,
Leland
,
Q.
, and
Yerkes
,
K.
,
2009
, “
Engineered Nanostructures for High Thermal Conductivity Substrates
,”
Nanotech Conference and Expo
, Houston, TX, May 3–7, pp. 505–508.
22.
De Bock
,
H. P.
,
Chauhana
,
S.
,
Chamarthya
,
P.
,
Stanton
,
E.
,
Weaver
,
S. E.
,
Denga
,
T.
,
Gerner
,
F. M.
,
Ababnehb
,
M. T.
, and
Varanasi
,
K.
,
2010
, “
On the Charging and Thermal Characterization of a Micro/Nano Structured Thermal Ground Plane
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, June 2–5.
23.
Weibel
,
J. A.
,
Kim
,
S. S.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2012
, “
Carbon Nanotube Coatings for Enhanced Capillary-Fed Boiling From Porous Microstructures
,”
Nanoscale and Microscale Thermophys. Eng.
,
16
(
1
), pp.
1
17
.
24.
Weibel
,
J. A.
,
Kousalya
,
A. S.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2012
, “
Characterization and Nanostructured Enhancement of Boiling Incipience in Capillary-Fed Ultra-Thin Sintered Powder Wicks
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
119
129
.
25.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
,
Altman
,
D. H.
, and
North
,
M. T.
,
2012
, “
Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
9
), pp.
1465
1478
.
26.
Altman
,
D. H.
,
Gupta
,
A.
,
Dubrowski
,
T. E.
,
Sharar
,
D. J.
,
Jankowski
,
N. R.
, and
North
,
M. T.
,
2013
, “
Analysis and Characterization of Thermal Expansion-Matched Wick-Based Multi-Chip Passive Heat Spreaders in Static and Dynamic Environments
,”
ASME
Paper No. InterPACK2013-73087.
27.
Givler
,
R. C.
, and
Martinez
,
M. J.
,
2009
, “
Modeling of Pulsating Heat Pipes
,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND2009-4520.
28.
Ma
,
H.
,
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Campen
,
S.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Experimental Investigation of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME
Paper No. IMECE2011-64821.
29.
Thompson
,
S.
,
Tessler
,
B. S.
,
Ma
,
H.
,
Smith
,
D.
, and
Sobel
,
A.
,
2013
, “
Ultrahigh Thermal Conductivity of Three-Dimensional Flat-Plate Oscillating Heat Pipes for Electromagnetic Launcher Cooling
,”
IEEE Trans. Plasma Sci.
,
41
(
5
), pp.
1326
1331
.
30.
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C. A.
,
Ma
,
H. B.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Van Campen
,
S.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104504
.
You do not currently have access to this content.