This work presents enhanced composite joints that support both electrical and thermal transport in electronic packages. The joints are sequentially formed by applying a nanoparticle suspension, evaporating a solvent, self-assembling of nanoparticles by capillary bridging, and the formation of so called “necks” between micrometer-sized features. This sequence is used to either form low temperature electrical joints under copper pillars or enhanced percolating thermal underfills (ePTU) with areal contacts between filler particles of the composite. The report discusses processing aspects of the capillary bridges evolution and of uniform neck formation, it discusses strategies to achieve mechanically stable necks, and it compares the performance of the achieved joints against state-of-the-art solutions. The capillary bridge evolution during liquid evaporation was investigated in copper pillar arrays and random particle beds. The vapor–liquid interface first penetrates locations of low pillar or particle density resulting in a dendritic fluid network. Once the network breaks up, individual necks form. For aqueous nanosuspensions, highly uniform necks with high yield were obtained by evaporation at 60 °C. Isothermal conditions were preferred to yield equal neck counts at the cavity's top and bottom surfaces. Mechanically stable silver necks required an annealing at only 150 °C, dielectric necks an annealing at 140 °C with a bimodal approach. Therein polystyrene (PS) nanoparticles occupy interstitial positions in densly packed alumina necks, then melt and adhere to the alumina. The electrical necks showed a shear strength of 16 MPa, equivalent to silver joints used in power electronic packages. The thermal necks yielded a thermal conductivity of up to 3.8 W/mK, five-fold higher than commercially available capillary thermal underfills.

References

References
1.
International Roadmap Committee, 2013, “International Technology Roadmap for Semiconductors: 2013 Edition Executive Summary,” Semiconductor Industry Association, San Francisco, CA, available at: http://www.itrs.net/Links/2013ITRS/2013Chapters/2013ExecutiveSummary.pdf
2.
Maria
,
J.
,
Dang
,
B.
,
Wright
,
S. L.
,
Tsang
,
C. K.
,
Polastre
,
R.
,
Liu
,
Y.
,
Wiggins
,
L.
, and
Knickerbocker
,
J. U.
,
2011
, “
3D Chip Stacking With 50 μm Pitch Lead-Free Micro-C4 Interconnections
,”
61st IEEE Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
268
273
.10.1109/ECTC.2011.5898524
3.
Liang
,
Q.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2008
, “
High Thermal Conductive Underfill Materials for Flip-Chip Application
,”
7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics
(
PORTABLE-POLYTRONIC 2008
), Garmisch-Partenkirchen, Germany, Aug. 17–20.10.1109/PORTABLE-POLYTRONIC.2008.4681290
4.
Dreezen
,
G.
, and
Luyckx
,
G.
,
2003
, “
Lead-Free Assembly: Conductive Adhesives Offer a Real Alternative
,”
Global SMT Packag.
,
3
(
7
), pp.
15
18
.
5.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
,
2006
, “
Thermal Interface Materials—A Review of the State of the Art
,”
1st Electronics Systemintegration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
1292
1302
.10.1109/ESTC.2006.280178
6.
Kanuparthi
,
S.
,
Subbarayan
,
G.
,
Siegmund
,
T.
, and
Sammakia
,
B.
,
2008
, “
An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp.
611
621
.10.1109/TCAPT.2008.2001839
7.
Dang
,
B.
,
Shih
,
D. Y.
,
Buchwalter
,
S.
,
Tsang
,
C.
,
Patel
,
C.
,
Knickerbocker
,
J.
,
Gruber
,
P.
,
Knickerbocker
,
S.
,
Grant
,
J.
,
Semkow
,
K.
,
Ruhmer
,
K.
, and
Hughlett
,
E.
,
2008
, “
50 μm Pitch Pb-Free Micro-Bumps by C4NP Technology
,”
58th Electronic Components and Technology Conference
(
ECTC 2008
), Lake Buena Vista, FL, May 27–30, pp.
1505
1510
.10.1109/ECTC.2008.4550175
8.
van Kessel
,
T. G.
,
Martin
,
Y. C.
,
Sandstrom
,
R. L.
, and
Guha
,
S.
,
2008
, “
Extending Photovoltaic Operation Beyond 2000 Suns Using a Liquid Metal Thermal Interface With Passive Cooling
,”
33rd Photovoltaic Specialists Conference
(
PVSC `08
), San Diego, CA, May 11–16.10.1109/PVSC.2008.4922753
9.
Wunderle
,
B.
, and
Michel
,
B.
,
2009
, “
Lifetime Modeling for Microsystems Integration: From Nano to Systems
,”
J. Microsyst. Technol.
,
15
(
6
), pp.
799
813
.10.1007/s00542-009-0860-z
10.
Brunschwiler
,
T.
,
Goicochea
,
J.
,
Matsumoto
,
K.
,
Wolf
,
H.
,
Kümin
,
C.
,
Michel
,
B.
,
Wunderle
,
B.
, and
Faust
,
W.
,
2011
, “
Formulation of Percolating Thermal Underfill by Sequential Convective Gap Filling
,”
7th International Conference and Exhibition on Device Packaging
, Scottsdale, AZ, Mar. 8–10, pp.
229
237
.
11.
Zürcher
,
J.
,
Goicochea
,
J.
,
Matsumoto
,
K.
,
Michel
,
B.
, and
Brunschwiler
,
T.
,
2012
, “
Centrifugal Formulation of Percolating Thermal Underfills for Flip-Chip Applications
,”
7th International Conference on Integrated Power Electronics Systems (CIPS)
, Nuremberg, Germany, Mar. 6–8.
12.
Scheel
,
M.
,
Seemann
,
R.
,
Brinkmann
,
M.
,
Di Michiel
,
M.
,
Sheppard
,
A.
,
Breidenbach
,
B.
, and
Herminghaus
,
S.
,
2008
, “
Morphological Clues to Wet Granular Pile Stability
,”
Nat. Mater.
,
7
(
3
), pp.
189
193
.10.1038/nmat2117
13.
Vakarelski
,
I. U.
,
Chan
,
D. Y. C.
,
Nonoguchi
,
T.
,
Shinto
,
H.
, and
Higashitani
,
K.
,
2009
, “
Assembly of Gold Nanoparticles Into Microwire Networks Induced by Drying Liquid Bridges
,”
Phys. Rev. Lett.
,
102
(
5
), p.
058303
.10.1103/PhysRevLett.102.058303
14.
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Ni
,
S.
,
Liu
,
Y.
,
Goicochea
,
J. V.
,
Zürcher
,
J.
, and
Wolf
,
H.
,
2012
, “
Formulation of Percolating Thermal Underfills Using Hierarchical Self-Assembly of Micro- and Nanoparticles by Centrifugal Forces and Capillary Bridging
,”
J. Microelectron. Electron. Packag.
,
9
(
4
), pp.
149
159
.
15.
Moon
,
K. S.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Hunt
,
A.
,
Li
,
Y.
, and
Wong
,
C. P.
,
2005
, “
Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications
,”
J. Electron. Mater.
,
34
(
2
), pp.
168
175
.10.1007/s11664-005-0229-8
16.
Parthé
,
E.
,
1961
, “
Space Filling of Crystal Structures a Contribution to the Graphical Presentation of Geometrical Relationships in Simple Crystal Structures
,”
Zeitschrift für Kristallographie
,
115
(
1–2
), pp.
52
79
.10.1524/zkri.1961.115.1-2.52
17.
Tyrrell
,
J. V.
,
1961
,
Diffusion and Heat Flow in Liquids
,
Butterworths
,
London
.
18.
Qi
,
K.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2008
, “
Effect of Interconnection Area on Shear Strength of Sintered Joint With Nano-Silver Paste
,”
Soldering Surf. Mount Technol.
,
20
(
1
), pp.
8
12
.10.1108/09540910810861431
19.
Matsumoto
,
K.
, and
Taira
,
Y.
,
2009
, “
Thermal Resistance Measurements of Interconnections, for the Investigation of the Thermal Resistance of a Three-Dimensional (3D) Chip Stack
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM 2009
), San Jose, CA, Mar. 15–19, pp.
321
328
.10.1109/STHERM.2009.4810783
20.
Goicochea
,
J. V.
,
Brunschwiler
,
T.
,
Zürcher
,
J.
,
Wolf
,
H.
,
Matsumoto
,
K.
, and
Michel
,
B.
,
2012
, “
Enhanced Centrifugal Percolating Thermal Underfills Based on Neck Formation by Capillary Bridging
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1234
1241
.10.1109/ITHERM.2012.6231563
You do not currently have access to this content.