A sensor is developed for simple, in situ characterization of dielectric thermal interface materials (TIMs) at bond line thicknesses less than 100 μm. The working principle is based on the detection of regions of contrasting electric permittivity. An array of long, parallel electrodes is flush-mounted into each opposing substrate face of a narrow gap interface, and exposed to the gap formed between the two surfaces. Electrodes are oriented such that their lengthwise dimension in one substrate runs perpendicular to those in the other. A capacitance measurement taken between opposing electrodes is used to characterize the interface region in the vicinity of their crossing point (junction). The electric field associated with each electrode junction is numerically simulated and analyzed. Criteria are developed for the design of electrode junction geometries that localize the electric fields. The capacitances between floating-ground electrodes in the electrode sensor configuration employed give rise to a nontrivial network of interacting capacitances which strongly influence the measured response at any junction. A generalized solution for analyzing the floating network response is presented. The technique is used to experimentally detect thermal grease spots of 0.2 mm to 1.8 mm diameter within a 25 μm interface gap. It is necessary to use the generalized solution to the capacitance network developed in this work to properly delineate regions of contrasting permittivity in the interface gap region using capacitance measurements.

References

References
1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
2.
Haque
,
S.
,
Lu
,
G. Q.
,
Goings
,
J.
, and
Sigmund
,
J.
,
2000
, “
Characterization of Interfacial Thermal Resistance by Acoustic Micrography Imaging
,”
Microelectron. Reliab.
,
40
(
3
), pp.
465
476
.10.1016/S0026-2714(99)00239-5
3.
Gowda
,
A.
,
Esler
,
D.
,
Tonapi
,
S.
,
Zhong
,
A.
,
Srihari
,
K.
, and
Schattenmann
,
F.
,
2006
, “
Micron and Submicron-Scale Characterization of Interfaces in Thermal Interface Material Systems
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
130
136
.10.1115/1.2188952
4.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2004
, “
Thermal Characterization of Eutectic Alloy Thermal Interface Materials With Void-Like Inclusions
,”
20th IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, March 9–11, pp.
98
103
.10.1109/STHERM.2004.1291308
5.
Gupta
,
A.
,
Liu
,
Y.
,
Zamora
,
N.
, and
Paddock
,
T.
,
2006
, “
Thermal Imaging for Detecting Thermal Interface Issues in Assembly and Reliability Stressing
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
),
San Diego, CA
, May 30–June 2, pp.
942
945
.10.1109/ITHERM.2006.1645447
6.
Erturk
,
H.
,
2011
, “
Evaluation of Image Reconstruction Algorithms for Nondestructive Characterization of Thermal Interfaces
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
906
917
.10.1016/j.ijthermalsci.2011.02.002
7.
Islam
,
N.
,
Lee
,
S.
,
Lee
,
J.
,
Ka
,
Y.
,
Khim
,
J.
, and
Galloway
,
J.
,
2010
, “
TIM Selection Methodology for High Power Flip Chip Packages
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas, NV
, June 2–5.10.1109/ITHERM.2010.5501345
8.
Prasser
,
H. M.
,
Bottger
,
A.
, and
Zschau
,
J.
,
1998
, “
A New Electrode-Mesh Tomograph for Gas–Liquid Flows
,”
Flow Meas. Instrum.
,
9
(
2
), pp.
111
119
.10.1016/S0955-5986(98)00015-6
9.
Da Silva
,
M. J.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2007
, “
Capacitance Wire-Mesh Sensor for Fast Measurement of Phase Fraction Distributions
,”
Meas. Sci. Technol.
,
18
(
7
), pp.
2245
2251
.10.1088/0957-0233/18/7/059
10.
Szalinski
,
L.
,
Abdulkareem
,
L. A.
,
Da Silva
,
M. J.
,
Thiele
,
S.
,
Beyer
,
M.
,
Lucas
,
D.
,
Hernandez Perez
,
V.
,
Hampel
,
U.
, and
Azzopardi
,
B. J.
,
2010
, “
Comparative Study of Gas–Oil and Gas–Water Two-Phase Flow in a Vertical Pipe
,”
Chem. Eng. Sci.
,
65
(
12
), pp.
3836
3848
.10.1016/j.ces.2010.03.024
11.
Da Silva
,
M. J.
,
Thiele
,
S.
,
Abdulkareem
,
L.
,
Azzopardi
,
B. J.
, and
Hampel
,
U.
,
2010
, “
High-Resolution Gas–Oil Two Phase Flow Visualization With a Capacitance Wire-Mesh Sensor
,”
Flow Meas. Instrum.
,
21
(
3
), pp.
191
197
.10.1016/j.flowmeasinst.2009.12.003
12.
Schubert
,
M.
,
Kryk
,
H.
, and
Hampel
,
U.
,
2010
, “
Slow-Mode Gas/Liquid-Induced Periodic Hydrodynamics in Trickling Packed Beds Derived From Direct Measurement of Cross-Sectional Distributed Local Capacitances
,”
Chem. Eng. Process.
,
49
(
10
), pp.
1107
1121
.10.1016/j.cep.2010.08.004
13.
Matusiak
,
B.
,
Da Silva
,
M. J.
,
Hampel
,
U.
, and
Romanowski
,
A.
,
2010
, “
Measurement of Dynamic Distributions in a Fixed Bed Using Electrical Capacitance Tomography and Capacitance Wire-Mesh Sensor
,”
Ind. Eng. Chem. Res.
,
49
(
5
), pp.
2070
2077
.10.1021/ie900988f
14.
Azzopardi
,
B. J.
,
Abdulkareem
,
L. A.
,
Zhao
,
D.
,
Thiele
,
S.
,
Da Silva
,
M. J.
,
Beyer
,
M.
, and
Hunt
,
A.
,
2010
, “
Comparison Between Electrical Capacitance Tomography and Wire Mesh Sensor Output for Air/Silicone Oil Flow in a Vertical Pipe
,”
Ind. Eng. Chem. Res.
,
49
(
18
), pp.
8805
8811
.10.1021/ie901949z
15.
Paranjape
,
S.
,
Ritchey
,
S. N.
, and
Garimella
,
S. V.
,
2012
, “
Electrical Impedance-Based Void Fraction Measurement and Flow Regime Identification in Microchannel Flows Under Adiabatic Conditions
,”
Int. J. Multiphase Flow
,
42
, pp.
175
183
.10.1016/j.ijmultiphaseflow.2012.02.010
16.
Ogawa
,
K.
,
Minkov
,
D.
,
Shoji
,
T.
,
Sato
,
M.
, and
Hashimoto
,
H.
,
1999
, “
NDE of Degradation of Thermal Barrier Coating by Means of Impedance Spectroscopy
,”
Nondestr. Test. Eval. Int.
,
32
(
3
), pp.
177
185
.10.1016/S0963-8695(98)00069-3
17.
Wang
,
X.
,
Mei
,
J.
, and
Xiao
,
P.
,
2010
, “
Non-Destructive Evaluation of Thermal Barrier Coatings Using Impedance Spectroscopy
,”
J. Eur. Ceram. Soc.
,
21
(
7
), pp.
855
859
.10.1016/S0955-2219(00)00291-0
18.
Fletcher
,
R.
,
1970
, “
A New Approach to Variable Metric Algorithms
,”
Comput. J.
,
13
(
3
), pp.
317
322
.10.1093/comjnl/13.3.317
19.
Analog Devices Inc.,
2005
, “
24-Bit Capacitance-to-Digital Converter With Temperature Sensor: AD7745/AD7746
,” Analog Devices Inc., Norwood, MA.
20.
Laird Technologies Inc.,
2009
, Data Sheet: “Tgrease 1500 Series Thermal Grease,” Laird Technologies, London, http://lairdtech.thomasnet.com/item/thermally-conductive-grease/tgrease-8482-1500/pn-4024
You do not currently have access to this content.